Podcast | Der Klimawandel und die Stadt: Mehr Grün oder mehr Photovoltaik?
Im Gespräch über Klimawandel und Photovoltaik und Begrünung in der Stadt (v.l.n.r.) Dr. Björn Rau, Nancy Fischer und Dipl. Ing. Jens Hasse.
Wie umgehen mit begrenztem Platz? Städte und Kommunen müssen sich jetzt auf die Folgen des Klimawandels vorbereiten. Gründächer, begrünte Fassaden und großflächige Entsiegelungen könnten zu einem besseren Mikroklima beitragen. Aber wird der Platz nicht auch für Photovoltaik benötigt?
In einem kontroversen Gespräch loten die Experten Björn Rau (HZB, BAIP) und Jens Hasse (Deutsches Institut für Urbanistik) die Optionen aus und finden neue Lösungen.
Städte stehen vor großen Herausforderungen durch den Klimawandel. Hitzewellen belasten den Kreislauf insbesondere von älteren Menschen. Dürren, aber auch Starkregen sollen häufiger und stärker ausfallen. Dagegen schlagen Planer:innen Maßnahmen wie Gründächer, begrünte Fassaden und großflächige Entsiegelungen vor – eine grüne Stadt mit weniger Hitzeinseln aus Glas und Beton.
Auf der anderen Seite sollen Gebäude nicht nur energieeffizient gebaut und gedämmt werden, sondern künftig einen zunehmenden Teil des Energiebedarfs selbst decken. Photovoltaik-Anlagen bieten dafür eine sehr effiziente Lösung.
Photovoltaik-Anlagen können ganz klassisch auf Dächern installiert werden, aber inzwischen gibt es noch deutlich mehr Optionen: in vielen Farben und Varianten sind nun Fassadenmodule auf dem Markt, die in Fassaden und andere Flächen integriert werden können. Damit erzeugt ein Haus klimaneutral den eigenen Strom, oft schon zu einem sehr günstigen Preis.
Doch wie gut verträgt sich Photovoltaik mit Gründächern und begrünten Fassaden? Wie lassen sich Lösungen finden, um in Städten beiden Maßnahmen ausreichend Platz zu geben?
Zwei Experten aus HZB (Dr. Björn Rau, Photovoltaik, Bauwerkintegrierte Photovoltaik) und DIFU (Dipl. Ing. Jens Hasse, Anpassung an Klimawandelfolgen) loten in einem kontroversen Gespräch mit Moderatorin Nancy Fischer aus, wo sich mögliche Konflikte auftun und diskutieren Lösungen.
Redaktion der Folge: Antonia Rötger (HZB), Gregor Hofmann (WZB/BR50) und Anja Sommerfeld (FVB/BR50)
S. Aden
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=23990;sprache=de
- Link kopieren
-
Batterieforschung mit dem HZB-Röntgenmikroskop
Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.
-
BESSY II: Neues Verfahren für bessere Thermokunststoffe
Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
-
Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.