Helmholtz-Gemeinschaft fördert Kooperation zwischen HZB und Slowenien zu Perowskit-Silizium-Tandem-Solarzellen

Marko Jošt hat seine Doktorarbeit zu Tandem-Solarzellen bei Steve Albrecht im HySPRINT-Labor absolviert (Bild). Nun wird er an der Universität in Lubljana weiter forschen.

Marko Jošt hat seine Doktorarbeit zu Tandem-Solarzellen bei Steve Albrecht im HySPRINT-Labor absolviert (Bild). Nun wird er an der Universität in Lubljana weiter forschen. © M. Setzpfandt/ HZB

Ein HZB-Team hat erfolgreich Fördermittel aus dem "Helmholtz European Partnering"-Programm der Helmholtz-Gemeinschaft eingeworben, um die Zusammenarbeit mit der Universität Ljubljana, Slowenien, auszubauen. Thema der Kooperation sind Tandem-Solarzellen aus Perowskit und Silizium und insbesondere ihre genaue Charakterisierung.

Aktuell bestehen die meisten Solarmodule aus Silizium, einem Halbleiter, der vor allem die roten Anteile des Sonnenspektrums zur Stromerzeugung nutzt. Große Chancen auf noch höhere Wirkungsgrade verspricht daher die Kombination von Silizium mit Perowskit-Halbleitern. Denn Halbleitermaterialien aus dieser Materialklasse wandeln insbesondere die energiereichen, blauen Anteile des Spektrums in Elektrizität um.

Nun hat der HZB-Physiker Prof. Dr. Steve Albrecht Mittel der Helmholtz-Gemeinschaft eingeworben, um solche Tandem-Solarzellen mit Partnern von der Universität Ljubljana, Slowenien, zu untersuchen. Das Projekt TAPAS wird im Programm „Helmholtz European Partnering“ für die kommenden drei Jahre mit jeweils 250.000 Euro jährlich gefördert. Nach einer Evaluierung kann die Förderdauer um zwei Jahre verlängert werden. Das Programm „Helmholtz European Partnering“ wurde ins Leben gerufen, um den europäischen Forschungsraum - speziell die Kooperation mit Ländern in Süd-, Mittel- und Osteuropa - zu stärken.

Der Name TAPAS steht für „Tandem Perovskite and Silicon solar cells - Advanced opto-electrical characterization, modeling and stability“.  Zusammen mit der optoelektrischen Modellierung sollen hocheffiziente und stabile Tandem-Solarzellen der nächsten Generation für das Energiesystem der Zukunft entwickelt werden.

Die Arbeitsgruppe für Photovoltaik und Optoelektronik der Universität Ljubljana (LPVO, geleitet von Prof. Dr Marko Topič) und das Helmholtz-Zentrum Berlin haben in den vergangenen Jahren eine sehr erfolgreiche Zusammenarbeit aufgebaut, die durch diese Förderung weiter gestärkt wird. Ziel der Kooperation ist es, die Prozesse zu analysieren, die die Stabilität der Module im Feld beeinträchtigen. 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • HZB-Patent zur Halbleitercharakterisierung geht in die Serienproduktion
    Nachricht
    10.10.2024
    HZB-Patent zur Halbleitercharakterisierung geht in die Serienproduktion
    Ein HZB-Team hat mit Freiberg Instruments einen innovativen Monochromator entwickelt, der nun auf den Markt kommt. Das Gerät ermöglicht es, die optoelektronischen Eigenschaften von Halbleitermaterialien kontinuierlich und rasch mit hoher Präzision zu erfassen, und zwar über einen breiten Spektralbereich vom nahen Infrarot bis ins tiefe Ultraviolett. Dabei wird Streulicht effizient unterdrückt. Die Innovation ist für die Entwicklung neuer Materialien interessant und auch einsetzbar, um industrielle Prozesse besser zu kontrollieren.
  • Photovoltaik-Reallabor knackt die Marke von 100 Megawattstunden
    Nachricht
    27.09.2024
    Photovoltaik-Reallabor knackt die Marke von 100 Megawattstunden
    Vor rund drei Jahren ging das Reallabor am HZB in Betrieb. Seitdem liefert die Photovoltaik-Fassade Strom aus Sonnenlicht. Am 27. September 2024 wurde die Marke von 100 Megawattstunden erreicht.

  • BESSY II: Heterostrukturen für die Spintronik
    Science Highlight
    20.09.2024
    BESSY II: Heterostrukturen für die Spintronik
    Spintronische Bauelemente arbeiten mit magnetischen Strukturen, die durch quantenphysikalische Wechselwirkungen hervorgerufen werden. Nun hat eine Spanisch-Deutsche Kooperation Heterostrukturen aus Graphen-Kobalt-Iridium an BESSY II untersucht. Die Ergebnisse belegen, wie sich in diesen Heterostrukturen zwei erwünschte quantenphysikalische Effekte gegenseitig verstärken. Dies könnte zu neuen spintronischen Bauelementen aus solchen Heterostrukturen führen.