Öffnet in neuem Fenster Opens in a new window Öffnet externe Seite Opens an external site Öffnet externe Seite in neuem Fenster Opens an external site in a new window

PVcomB

Si based tandem-technologies for industrial PV applications

In the Tandem Industrialization Group at PVcomB we develop silicon-based tandem solar cells with the focus on industrial applicable materials and processes. Based on our strong background in thin-film technology, we are currently mainly active in the Technology Fields:

We develop and maintain Baseline Processes as robust platforms to facilitate excellent reproducibility for reaching high device performance. Most importantly, we utilize (partially) automated, high-throughput, industrial-type equipment operated by highly-skilled and experienced engineers and scientists. By this we offer top-level industrial research as well as technology transfer to industry. Processing is possible on a maximum sample size of 30 x 30 cm² (glass) and 166 x 166 mm² (Si wafer, M6).


Topics & Applications:

  • Industrial silicon heterojunction solar cells with high efficiency
  • Silicon heterojunction solar cells for application as bottom cell in high-efficiency multi-junctions, e.g. with perovskite top cells.
  • Industrial thin film silicon solar cells and modules (in cooperation with industry partners)
  • Advanced silicon-based passivating contact layers for novel types of silicon-based solar cells.
  • Silicon heterojunction and thin-film silicon solar cells for hydrogen generation.
  • Industrial compatible processes for all-rear-contacted (IBC) silicon heterojunction solar cells.

Example Cooperation Projects:

  • Internal collaboration at HZB with the the with Young investigator Groups on Perovskite/Silicon Tandems from Steve Albrecht, Evan Unger and Antonio Abate
  • Within the national BMWi project Hera with Meyer Burger Germany and others on advanced, industrial silicon heterojunction solar cells and modules.
  • With Sunpartner Technologies on thin-film silicon solar cells for application in Wysips® Technology, such as displays, watches, etc.

Selected Publications:

Nanocrystalline silicon emitter optimization for Si‐HJ solar cells: Substrate selectivity and CO2 plasma treatment effect, L. Mazzarella, S. Kirner, O. Gabriel, S.S. Schmidt, L. Korte, B. Stannowski, B. Rech, R. Schlatmann, physica status solidi (a) Volume 214, Issue 2 1532958 (2017). DOI: 10.1002/pssa.201532958.

Emitter Patterning for Back-Contacted Si Heterojunction Solar Cells Using Laser Written Mask Layers for Etching and Self-Aligned Passivation (LEAP), Sven Ring, Simon Kirner, Christof Schultz, Paul Sonntag, Bernd Stannowski, Lars Korte, and Rutger Schlatmann, IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 6 (4) (2016). DOI 10.1109/JPHOTOV.2016.2566882.

Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiOx layers for application in solar cells, M. Klingsporn, S. Kirner, C. Villringer, D. Abou-Ras, I. Costina, M. Lehmann, B. Stannowski,
Journal of Applied Physics 119 22 223104 (2016). DOI: 10.1063/1.4953566.

Wafer surface tuning for a-Si:H/μc-Si:H/c-Si triple junction solar cells for application in water splitting,
Simon Kirner, Hoora Sarajan, Anahita Azarpira, Thomas Schedel-Niedrig, Bernd Stannowski, Bernd Rech, Rutger Schlatmann, Energy Procedia 102 126 – 135 (2016). DOI: 10.1016/j.egypro.2016.11.327.

Quadruple-junction solar cells and modules based on amorphous and microcrystalline silicon with high stable efficiencies, Simon Kirner, Sebastian Neubert, Christof Schultz, Onno Gabriel, Bernd Stannowski, Bernd Rech and Rutger Schlatmann, Japanese Journal of Applied Physics, Volume 54, Number 8S1 (2015). DOI: 10.7567/JJAP.54.08KB03.

Hybrid Organic/Inorganic ThinFilm Multijunction Solar Cells Exceeding 11% Power Conversion Efficiency,
S. Roland, S. Neubert, S. Albrecht, B. Stannowski, M. Seger, A. Facchetti, R. Schlatmann, B. Rech,
D. Neher, Advanced Materials 27 7 1262-1267 (2015). DOI: 10.1002/adma.201404698.

P-type microcrystalline silicon oxide emitter for silicon heterojunction solar cells allowing current densities above 40 mA/cm², L. Mazzarella, S. Kirner, B. Stannowski, L. Korte, B. Rech, R. Schlatmann, Applied Physics Letters 106 2 23902 (2015). DOI: 10.1063/1.4905906.

Improved conversion efficiency of aSi: H/µcSi: H thinfilm solar cells by using annealed Aldoped zinc oxide as front electrode material, S. Neubert, M. Wimmer, F. Ruske, S. Calnan, O. Gabriel, B. Stannowski, R. Schlatmann, B. Rech, Progress in Photovoltaics: Research & Applications 22 (12) 1285-1291 (2014). DOI: 10.1002/pip.2389.

Achievements and challenges in thin film silicon module production, B. Stannowski, O. Gabriel, S. Calnan, T. Frijnts, A. Heidelberg, S. Neubert, S. Kirner, S. Ring, M. Zelt, B. Rau, J.-H. Zollondz, H. Bloess, R. Schlatmann, B. Rech, Solar energy materials and solar cells 119 196-203 (2013). DOI: 10.1016/j.solmat.2013.06.043.

 

An overview about all publications of PVcomB is availabe here.