Dr. Annika Bande: Freigeist-Fellow am HZB

Freigeist-Fellow am HZB: Dr. Annika Bande<br />Foto: Mirko Krenzel f&uuml;r VolkswagenStiftung<br /><span></span>

Freigeist-Fellow am HZB: Dr. Annika Bande
Foto: Mirko Krenzel für VolkswagenStiftung

Seit Anfang Oktober beherbergt das HZB einen „Freigeist-Fellow“ der VolkswagenStiftung: Dr. Annika Bande hat jetzt ihre Forschung am Institut „Methoden der Materialentwicklung“ von Prof. Dr. Emad Aziz aufgenommen. Dort wird sie mit zunächst drei Doktoranden ihre eigene Nachwuchsgruppe aufbauen.

Die theoretische Chemikerin beschäftigt sich mit ultraschnellen Energietransfer-Prozessen. Im Mittelpunkt ihrer Forschung steht der so genannte interatomare Coulombzerfall (ICD): Beim ICD wird in einem Atom zunächst ein elektronisch angeregter Zustand erzeugt. Bei der Rückkehr in den Grundzustand gibt das Atom überschüssige Energie durch elektronische Coulomb-Wechselwirkung an ein Nachbaratom oder -molekül ab. Dabei treten die Elektronen auch über lange Entfernungen miteinander in Wechselwirkung.

Diese ultraschnellen Energietransfer-Prozesse sind bereits in einer Vielzahl von Variationen in atomaren und molekularen Systemen theoretisch und experimentell untersucht worden, unter anderem auch am HZB. Annika Bande hat in ihren theoretischen Arbeiten gezeigt, dass ICD auch in halbleitenden Nanokristallen – so genannten Quantenpunkten – stattfinden muss. Den experimentellen Nachweis wollen sie und ihre Mitarbeiter nun am Institut von Emad Aziz führen. In einem einzigartigen Ansatz beobachten die Wissenschaftler die Bewegung von Elektronen sowohl in theoretischen Berechnungen als auch mit verschiedenen spektroskopischen Methoden. Sie versprechen sich auch über das Freigeist-Projekt hinaus viele richtungsweisende Beiträge zur Untersuchung chemischer Prozesse und zur Materialforschung.

„Am HZB finde ich optimale Bedingungen, um die entsprechenden Versuche theoretisch zu begleiten“, sagt Dr. Bande. Die Aziz-Gruppe habe bereits Untersuchungen zum ICD an atomaren Systemen in wässriger Lösung durchgeführt. „Auf diese Erfahrung werde ich aufbauen können“, so Annika Bande weiter: „Zugleich erweitere ich das Spektrum der Gruppe auf, da ich mich vor allem auf Quantenpunkte konzentrieren werde.“ Davon verspricht sich die Wissenschaftlerin, die sich derzeit an der Universität Heidelberg habilitiert, Erkenntnisse unter anderem für die Entwicklung zukünftiger Solarzellen.

Das Freigeist-Fellowship der VolkswagenStiftung ist zunächst auf fünf Jahre angelegt und in dieser ersten Phase mit rund 790.000 Euro ausgestattet. Die Förderung wendet sich an „außergewöhnliche Forscherpersönlichkeiten nach der Promotion, die sich zwischen etablierten Forschungsfeldern bewegen und risikobehaftete Wissenschaft betreiben möchten“, so die Stiftung.

Hannes Schlender

  • Link kopieren

Das könnte Sie auch interessieren

  • HZB-Patent zur Halbleitercharakterisierung geht in die Serienproduktion
    Nachricht
    10.10.2024
    HZB-Patent zur Halbleitercharakterisierung geht in die Serienproduktion
    Ein HZB-Team hat mit Freiberg Instruments einen innovativen Monochromator entwickelt, der nun auf den Markt kommt. Das Gerät ermöglicht es, die optoelektronischen Eigenschaften von Halbleitermaterialien kontinuierlich und rasch mit hoher Präzision zu erfassen, und zwar über einen breiten Spektralbereich vom nahen Infrarot bis ins tiefe Ultraviolett. Dabei wird Streulicht effizient unterdrückt. Die Innovation ist für die Entwicklung neuer Materialien interessant und auch einsetzbar, um industrielle Prozesse besser zu kontrollieren.
  • Photovoltaik-Reallabor knackt die Marke von 100 Megawattstunden
    Nachricht
    27.09.2024
    Photovoltaik-Reallabor knackt die Marke von 100 Megawattstunden
    Vor rund drei Jahren ging das Reallabor am HZB in Betrieb. Seitdem liefert die Photovoltaik-Fassade Strom aus Sonnenlicht. Am 27. September 2024 wurde die Marke von 100 Megawattstunden erreicht.

  • Wechselströme für alternatives Rechnen mit Magneten
    Science Highlight
    26.09.2024
    Wechselströme für alternatives Rechnen mit Magneten
    Eine neue Studie der Universität Wien, des Max-Planck-Instituts für Intelligente Systeme in Stuttgart und der Helmholtz-Zentren in Berlin und Dresden stellt einen wichtigen Schritt dar, Computerbauelemente weiter zu miniaturisieren und energieeffizienter zu machen. Die in der renommierten Fachzeitschrift Science Advances veröffentlichte Arbeit zeigt neue Möglichkeiten, reprogrammierbare magnetische Schaltungen zu schaffen, indem Spinwellen durch Wechselströme angeregt und bei Bedarf umgelenkt werden. Die Experimente dafür wurden an der Maxymus-Beamline an BESSY II durchgeführt.