Perowskit-Solarzellen: Einsichten in die Frühstadien der Strukturbildung

Mit Kleinwinkelstreuung gelang es nun fr&uuml;he Vorstufen der Strukturbildung in Vorl&auml;uferl&ouml;sungen von Perowskitsolarzellen nachzuweisen.<br /><br /><br />

Mit Kleinwinkelstreuung gelang es nun frühe Vorstufen der Strukturbildung in Vorläuferlösungen von Perowskitsolarzellen nachzuweisen.


© M. Flatken/HZB

Mit der Methode der Kleinwinkelstreuung an der PTB-Röntgen-Beamline von BESSY II konnte ein HZB-Team experimentell die kolloidale Chemie von Perowskit-Vorläuferlösungen für Solarzellen untersuchen. Die Ergebnisse sind hilfreich, um Herstellungsverfahren und Qualität dieser spannenden Halbleitermaterialien gezielt und systematisch zu optimieren.

Halogenid-Perowskit-Halbleiter sind günstige, variable und leistungsstarke Materialien, die sowohl in Solarzellen, als auch als optoelektronische Bauelemente Verwendung finden. Die hierzu benötigten kristallinen Perowskit-Dünnschichten werden bei niedriger Temperatur aus einer Vorläuferlösung hergestellt: Während das Lösemittel durch Tempern verdampft, interagiert mit Jod koordiniertes Blei mit Methylammonium und bildet schließlich die polykristalline Dünnschicht. Die Qualität dieser Dünnschicht entscheidet über die Leistungsfähigkeit des Halbleitermaterials. Bislang ist es nicht möglich, diesen Prozess der Kristallisation perfekt zu kontrollieren.

Wie verläuft der Prozess der Kristallisation?

Nun hat ein HZB-Team um Prof. Antonio Abate mit der Methode der Kleinwinkelstreuung experimentell ermittelt, wie sich die anfänglich ungeordneten Elemente in der Vorläuferlösung bereits zu ersten Clustern finden und somit eine anfängliche „vorkristalline“ Anordnung zur weiteren Umsetzung zu Perowskit-Dünnschichten darstellen.

Die Auswertung zeigt, dass sich zunächst Gruppen aus Blei und Iod formieren, so genannte Iodoplumbate, in denen sich ein Blei-Atom oktaedrisch mit sechs Jodatomen umgibt. Diese Untergruppen bilden im weiteren Verlauf ein dynamisches kolloidales Netzwerk, in das sich das organische Methylammonium einordnet, aus denen sich die bekannte Perowskit-Struktur ableitet.

„Während wir mit herkömmlichen Methoden bisher nur stark verdünnte Lösungen messen konnten, war es mit dem ASAXS-Instrument des HZB an der FCM-Beamline der PTB an BESSY II möglich, die Lösungen in der Konzentration zu untersuchen, die wir auch für die Herstellung von Dünnfilmen benötigen“, betont Marion Flatken, die die Messungen im Rahmen ihrer Promotion durchgeführt hat.

Kleinwinkelstreuung zeigt Clusterbildung

„Kleinwinkelstreuung ist optimal für die Messung von Nanopartikeln und Substrukturen in Lösungen geeignet“, erklärt Dr. Armin Hoell, Experte für die Methode der Kleinwinkelstreuung und ein korrespondierender Autor der Studie.  „Die Messdaten zeigen deutlich die Ausbildung von zunächst nanometergroßen Clustern, die von der Dimension gut zur den PbI6-Oktaeder passen und die sich konzentrationsabhängig organisieren. Die Messungen sind zudem sehr gut reproduzierbar.“

Die vorgestellte Technik und Ergebnisse können dazu beitragen, die Herstellungsverfahren weiter zu optimieren und die Qualität solcher Perowskit-Dünnschichten bei der Herstellung besser und systematischer zu kontrollieren.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Photovoltaik-Reallabor knackt die Marke von 100 Megawattstunden
    Nachricht
    27.09.2024
    Photovoltaik-Reallabor knackt die Marke von 100 Megawattstunden
    Vor rund drei Jahren ging das Reallabor am HZB in Betrieb. Seitdem liefert die Photovoltaik-Fassade Strom aus Sonnenlicht. Am 27. September 2024 wurde die Marke von 100 Megawattstunden erreicht.

  • Wechselströme für alternatives Rechnen mit Magneten
    Science Highlight
    26.09.2024
    Wechselströme für alternatives Rechnen mit Magneten
    Eine neue Studie der Universität Wien, des Max-Planck-Instituts für Intelligente Systeme in Stuttgart und der Helmholtz-Zentren in Berlin und Dresden stellt einen wichtigen Schritt dar, Computerbauelemente weiter zu miniaturisieren und energieeffizienter zu machen. Die in der renommierten Fachzeitschrift Science Advances veröffentlichte Arbeit zeigt neue Möglichkeiten, reprogrammierbare magnetische Schaltungen zu schaffen, indem Spinwellen durch Wechselströme angeregt und bei Bedarf umgelenkt werden. Die Experimente dafür wurden an der Maxymus-Beamline an BESSY II durchgeführt.
  • BESSY II: Heterostrukturen für die Spintronik
    Science Highlight
    20.09.2024
    BESSY II: Heterostrukturen für die Spintronik
    Spintronische Bauelemente arbeiten mit magnetischen Strukturen, die durch quantenphysikalische Wechselwirkungen hervorgerufen werden. Nun hat eine Spanisch-Deutsche Kooperation Heterostrukturen aus Graphen-Kobalt-Iridium an BESSY II untersucht. Die Ergebnisse belegen, wie sich in diesen Heterostrukturen zwei erwünschte quantenphysikalische Effekte gegenseitig verstärken. Dies könnte zu neuen spintronischen Bauelementen aus solchen Heterostrukturen führen.