Ein neuer Weg zu spinpolarisierten Strömen

Hafniumdiselenid ist ein quasizweidimensionales Material mit interessanten Eigenschaften für die Spintronik. Die Zeichnung zeigt die Kristallstruktur.

Hafniumdiselenid ist ein quasizweidimensionales Material mit interessanten Eigenschaften für die Spintronik. Die Zeichnung zeigt die Kristallstruktur. © O. Clark/HZB

Die Übergangsmetall-Dichalcogenide (TMD) sind eine Materialklasse mit großem Potential für die Spintronik. Eine Studie an BESSY II hat gezeigt, dass in einem dieser Materialien bereits einfach linear polarisiertes Licht ausreicht, um Spins unterschiedlicher Ausrichtung selektiv zu manipulieren. Dieses Ergebnis eröffnet einen neuen Weg zur Erzeugung spinpolarisierter Ströme und ist ein Meilenstein für die Entwicklung spintronischer und opto-spintronischer Geräte.

Die zweite Hälfte des 20. Jahrhunderts war das Zeitalter der Elektronik: Elektronische Bauelemente wurden immer komplexer und kleiner, aber diese Prozesse stoßen nun an Grenzen. Die Spintronik verspricht, mit deutlich weniger Energieeinsatz Informationen allein auf der Grundlage von Spins zu speichern oder zu transportieren. Allerdings ist es immer noch eine Herausforderung, Spins durch externe Felder zuverlässig und in großem Maßstab zu steuern.

Quasi-2D-Materialien im Fokus

Die Übergangsmetall-Dichalcogenide (TMD) sind neben Graphen die am intensivsten untersuchten quasi-zweidimensionalen Materialien, die Ladungsdichtewellen, Supraleitfähigkeit und nichttriviale topologische Eigenschaften zeigen. Hafniumdiselenid (HfSe2) gehört zu dieser Klasse von Materialien.

Neue Eigenschaft von HfSe2 entdeckt

Jetzt hat ein Team an BESSY II die elektronische Struktur von HfSe2 analysiert und eine neue Eigenschaft entdeckt, die die Erzeugung und Kontrolle von Spinströmen erleichtern könnte.

"Um von der Elektronik zur Spintronik überzugehen, müssen wir Materialien finden, in denen sich Spin-up- und Spin-down-Elektronen unterschiedlich verhalten", sagt Erstautor Oliver Clark. Es gibt zwei Möglichkeiten, dies zu erreichen: "Wir können entweder das Material von außen stören, so dass Elektronen mit unterschiedlichen Spins funktional ungleichwertig werden, oder wir können Magnete verwenden, bei denen die Elektronen mit entgegengesetzten Spins von Haus aus funktional unterschiedlich sind."

Bei der ersten Methode liegt die Schwierigkeit darin, geeignete Materialpaarungen und Mechanismen zu finden, mit denen die Spin-Kontrolle von außen aufgezwungen werden kann. Für die so genannten 2H-strukturierten TMDs benötigt man beispielsweise perfekte Einkristalle und eine zirkular polarisierte Lichtquelle. Im Gegensatz dazu ist die zweite Methode viel einfacher, aber die Integration von Magneten in Bauelemente ist für den Betrieb herkömmlicher elektronischer Komponenten problematisch, vor allem in kleinem Maßstab.

Bei HfSe2 funktioniert ein einfacherer Weg

Zwischen diesen beiden Möglichkeiten gibt es jedoch einen Mittelweg, zumindest für einige ausgewählte Materialien wie HfSe2: "Wenn man dieses Material mit linear polarisiertem Licht untersucht - das einfacher zu erzeugen ist als zirkular polarisiertes Licht -, verhält es sich in Bezug auf seine Spinstruktur wie ein Magnet. So wird die Spin-Selektivität sehr einfach, und man hat nicht die Probleme, die mit anderen magnetischen Eigenschaften verbunden sind", erklärt Clark. Der Vorteil ist: Die Kristallqualität oder die Ausrichtung der Probe spielen keine Rolle mehr.

Dies eröffnet einen völlig neuen Weg zur Erzeugung von spinpolarisierten Strömen aus Übergangsmetall-Dichalcogeniden. "Unsere Ergebnisse sind nicht nur für Physikerinnen und Physiker von Bedeutung, die sich mit geschichteten zweidimensionalen Materialien beschäftigen, sondern auch für alle, die sich mit der Herstellung von spintronischen und opto-spintronischen Bauelementen beschäftigen", hofft Clark.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Science Highlight
    02.12.2024
    Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Ein internationales Team hat an BESSY II erstmals beobachtet, wie schwere Moleküle (Bromchlormethan) in kleinere Fragmente zerfallen, wenn sie Röntgenlicht absorbieren. Mit einer neu entwickelten Analysemethode gelang es ihnen, die ultraschnelle Dynamik dieses Prozesses sichtbar zu machen. Dabei lösen die Röntgenphotonen einen „molekularen Katapulteffekt“ aus: Leichte Atomgruppen werden zuerst herausgeschleudert, ähnlich wie Geschosse, die von einem Katapult abgeschossen werden, während die schwereren Atome – Brom und Chlor – sich deutlich langsamer trennen.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.