Grüner Wasserstoff: Wie photoelektrochemische Zellen wettbewerbsfähig werden könnten

Die photoelektrochemische Zelle: Sonnenlicht erzeugt in der mit Katalysator beschichteten Solarzelle (rechts) eine Photospannung, die Wassermolek&uuml;le spaltet. An der linken Elektrode entsteht Wasserstoff, auf der rechten Seite Sauerstoff. Ein Teil des H<sub>2</sub> reagiert mit&nbsp; Itacons&auml;ure (IA) weiter zu wertvoller Methylbernsteins&auml;ure (MSA).

Die photoelektrochemische Zelle: Sonnenlicht erzeugt in der mit Katalysator beschichteten Solarzelle (rechts) eine Photospannung, die Wassermoleküle spaltet. An der linken Elektrode entsteht Wasserstoff, auf der rechten Seite Sauerstoff. Ein Teil des H2 reagiert mit  Itaconsäure (IA) weiter zu wertvoller Methylbernsteinsäure (MSA). © M. Künsting / HZB

Mit Sonnenlicht lässt sich grüner Wasserstoff in photoelektrochemischen Zellen (PEC) direkt aus Wasser erzeugen. Bisher waren Systeme, die auf diesem 'direkten Ansatz' basieren, energetisch nicht wettbewerbsfähig. Die Bilanz ändert sich jedoch, sobald ein Teil des Wasserstoffs in PEC-Zellen in-situ für erwünschte Reaktionen genutzt wird. Dadurch lassen sich wertvolle Chemikalien für die chemische und pharmazeutische Industrie produzieren. Die Zeit für die Energie-Rückgewinnung des direkten Ansatztes mit der PEC-Zelle kann damit drastisch verkürzt werden, zeigt eine neue Studie aus dem HZB.

 

Wasserstoff kann durch Elektrolyse von Wasser hergestellt werden, im Idealfall mit Strom aus Windkraft oder Solarmodulen. Dieser "grüne" Wasserstoff soll eine wichtige Rolle im Energiesystem der Zukunft spielen. In den letzten zehn Jahren hat die solare Wasserspaltung erhebliche Fortschritte gemacht: Die besten Elektrolyseure, die die benötigte Spannung aus PV-Modulen oder Windkraft beziehen, erreichen bereits Wirkungsgrade von bis zu 30 %. Dies ist der indirekte Ansatz.

Direkter Ansatz in der PEC-Zelle

Am HZB-Institut für Solare Brennstoffe arbeiten mehrere Teams an einem direkten Ansatz zur solaren Wasserspaltung: Sie entwickeln Photoelektroden, die Sonnenlicht in elektrische Energie umwandeln, außerdem in wässrigen Lösungen stabil sind und die Wasserspaltung katalytisch fördern. Diese Photoelektroden bestehen aus Lichtabsorbern, die mit Katalysatormaterialien beschichtet sind und die aktive Komponente einer photoelektrochemischen Zelle (PEC) bilden. Die besten PEC-Zellen, die auf kostengünstigen und stabilen Metalloxidabsorbern basieren, erreichen bereits Wirkungsgrade von nahezu 10 %. Obwohl PEC-Zellen immer noch weniger effizient sind als PV-getriebene Elektrolyseure, haben sie auch einige Vorteile: So lässt sich in PEC-Zellen die Wärme des Sonnenlichts nutzen, um die Reaktionen zu beschleunigen. Und da die Stromdichten bei diesem Ansatz zehn- bis hundertmal niedriger sind, können teure Katalysatoren durch preiswerte Katalysatoren aus reichlich vorhandenen Materialien ersetzt werden.

Noch nicht wettbewerbsfähig

Bisher haben technisch-ökonomische Analysen (TEA) und Nettoenergiebewertungen (NEA) gezeigt, dass das PEC-Konzept für eine großtechnische Umsetzung noch nicht wettbewerbsfähig ist. Wasserstoff aus PEC-Systemen kostet heute etwa 10 USD/kg, etwa sechsmal mehr als Wasserstoff aus der Dampfreformierung von fossilem Methan (1,5 USD/kg). Außerdem ist der kumulative Energiebedarf für die PEC-Wasserspaltung schätzungsweise vier- bis zwanzigmal höher als für die Wasserstofferzeugung mit Windturbinen und Elektrolyseuren.

Die Idee: wertvolle Chemikalien 

„Hier wollten wir einen neuen Ansatz einbringen", sagt Dr. Fatwa Abdi vom HZB-Institut für Solare Brennstoffe. Im Rahmen des UniSysCat-Exzellenznetzwerks mit Prof. Reinhard Schomäcker und Prof. Roel van de Krol untersuchte Abdis Gruppe, wie sich die Bilanz verändert, wenn ein Teil des produzierten Wasserstoffs im selben Reaktor (in situ) mit Itaconsäure (IA) zu Methylbernsteinsäure (MSA) weiterreagiert.

Energie-Rückgewinnungszeiten

Sie berechneten zunächst, wie viel Energie zur Herstellung der PEC-Zelle aus Lichtabsorbern, Katalysatormaterialien und anderen Materialien wie Glas benötigt wird und wie lange sie funktionieren muss, um diese Energie in Form von chemischer Energie als Wasserstoff oder MSA zu erzeugen. Für Wasserstoff allein beträgt diese „energetische Amortisationszeit" etwa 17 Jahre, wenn man von einem bescheidenen Wirkungsgrad von 5 % bei der Umwandlung von Sonnenenergie in Wasserstoff ausgeht. Wenn nur 2 % des erzeugten Wasserstoffs für die Umwandlung von IA in MSA verwendet werden, halbiert sich die energetische Amortisationszeit, und wenn 30 % des Wasserstoffs in MSA umgewandelt werden, kann die Produktionsenergie nach nur 2 Jahren wiedergewonnen werden. „Das macht das Verfahren viel nachhaltiger und wettbewerbsfähiger", sagt Abdi. Ein Grund: Die für die Synthese von MSA in einer solchen PEC-Zelle benötigte Energie beträgt nur ein Siebtel des Energiebedarfs herkömmlicher MSA-Produktionsverfahren.

Ein flexibles System

„Das System ist flexibel und kann auch andere wertvolle Chemikalien herstellen, die derzeit am Standort benötigt werden", erklärt Abdi. Der Vorteil ist, dass die festen Komponenten der PEC-Anlage, die den größten Teil der Investitionskosten ausmachen, gleichbleiben; lediglich der Hydrierkatalysator und das Einsatzmaterial müssen ausgetauscht werden. „Dieser Ansatz bietet eine Möglichkeit, die Produktionskosten für grünen Wasserstoff erheblich zu senken und erhöht die wirtschaftliche Machbarkeit der PEC-Technologie", sagt Abdi. „Wir haben das Verfahren sorgfältig durchdacht, und der nächste Schritt besteht darin, im Labor zu testen, wie gut die gleichzeitige Herstellung von Wasserstoff und MSA in der Praxis funktioniert."

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • HZB-Postdoc Feng Liang erhält Professur an der Xi'an Jiaotong University
    Nachricht
    07.03.2025
    HZB-Postdoc Feng Liang erhält Professur an der Xi'an Jiaotong University
    Seit 2021 forscht Dr. Feng Liang am HZB-Institut für Solare Brennstoffe. Nun hat er einen Ruf an das Green Hydrogen Innovation Center der Fakultät für Maschinenbau der Xi'an Jiaotong University in China erhalten. Ab Juni 2025 baut er dort ein eigenes Forschungsteam auf.
  • Strategisches Positionspapier zur Stärkung der Solarindustrie
    Nachricht
    06.03.2025
    Strategisches Positionspapier zur Stärkung der Solarindustrie
    Frankfurt, 06. März 2025 – Die führenden deutschen Solarforschungseinrichtungen, die Fachabteilung „Photovoltaik Produktionsmittel“ des Industrieverbands VDMA und das Produktionsplanungs-Unternehmen RCT Solutions, haben ein gemeinsames Positionspapier zur Stärkung der deutschen und europäischen Solarindustrie veröffentlicht. Dieses wird nun an die Parteien übermittelt, die nach der Bundestagswahl im Bundestag vertreten sind. Ziel ist es, die vorgeschlagenen Maßnahmen in die Koalitionsverhandlungen einzubringen und damit die Grundlage für eine widerstandsfähige und wettbewerbsfähige Solarindustrie in Deutschland zu schaffen.
  • Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Science Highlight
    25.02.2025
    Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.