Grüner Wasserstoff: Iridium-Katalysatoren mit Titanoxiden verbessern

Die Iridium-Atome (rot) sind in unterschiedliche Titanoxide eingebettet, die für mehr Stabilität sorgen. 

Die Iridium-Atome (rot) sind in unterschiedliche Titanoxide eingebettet, die für mehr Stabilität sorgen.  © Marianne van der Merwe

Anoden für die elektrolytische Aufspaltung von Wasser bestehen meist aus Iridium-basierten Materialien. Um die Stabilität des Iridium-Katalysators zu erhöhen, hat nun ein Team am HZB mit einer Gruppe des HI-ERN eine Probe hergestellt, in der die Konzentration von Iridium und Titanoxiden systematisch variiert. Analysen der einzelnen Probensegmente an BESSY II im EMIL-Labor zeigten, dass sich die Stabilität des Iridium-Katalysators signifikant steigern lässt.

Eine Option, um Energie aus Sonne oder Wind zu speichern, ist die Produktion von „grünem“ Wasserstoff durch Elektrolyse. Wasserstoff speichert Energie in chemischer Form und setzt sie bei Verbrennung wieder frei, wobei keine Abgase entstehen, sondern nur Wasser. Heute wird Iridium als „State-of-the Art“-Katalysator genutzt. Allerdings löst sich Iridium im sauren Milieu der Elektrolysezelle zunehmend auf, so dass die katalytische Wirkung schnell nachlässt.

„Wir wollten untersuchen, ob sich die Stabilität des Katalysators durch Beimischung unterschiedlicher Anteile von Titanoxid verbessert“, sagt Prof. Dr. Marcus Bär (HZB). Titanoxid ist katalytisch zwar nicht aktiv, aber stabil. „Wir hatten Hinweise darauf, dass die Titanoxid-Präsenz sich positiv auf die Stabilität auswirkt, ohne die katalytische Wirkung des Iridiums zu beeinflussen. Wir wollten aber auch herausfinden, ob es da ein ideales Mischungsverhältnis gibt.“

Eine Probe als Materialbibliothek

Die Probe wurde am Helmholtz-Institut Erlangen-Nürnberg für Erneuerbare Energien (HI-ERN) im Team von Prof. Dr. Olga Kasian durch Aufsputtern von Titan und Iridium mit lokal variierender Zusammensetzung hergestellt. Es handelt sich um eine so genannte Dünnfilm-Materialbibliothek, auf der die Iridium-Anteile von 20 % bis 70 % variieren.

An BESSY II analysierte das Team mit röntgenspektroskopischen Methoden, wie sich die chemische Struktur in Abhängigkeit vom Iridium-Gehalt der gemischten Iridium-Titanoxidproben änderte. Dabei spielten mehrere Effekte eine Rolle: So verbesserte die Gegenwart von Titan-Suboxiden (wie TiO und TiOx) die Leitfähigkeit des Materials. Spannend war auch der Befund, dass sich ein Teil der Titanoxide schneller im wässrigen Elektrolyten löste als Iridium, wodurch Mikroporen an der Oberfläche entstanden. Dadurch kamen mehr Iridium-Atome aus unteren Lagen in Kontakt mit dem Elektrolyten, was die Sauerstoffentwicklungsreaktion beschleunigte. Der Haupteffekt war jedoch, dass die Anwesenheit von Titanoxiden (TiO2, sowie TiO und TiOx) tatsächlich die Auflösung von Iridium deutlich reduzierte. „Bei der Probe mit 30 % Titanzusatz im Vergleich zu einem reinen Iridium-Elektrodenmaterial konnten wir eine um etwa 70 % geringere Iridium-Auflösung sehen“, sagt Marianne van der Merwe, die die Messungen im Rahmen ihrer Promotion bei Marcus Bär durchgeführt hatte.

Praxisrelevanz hoch

Doch wie relevant sind solche Ergebnisse aus der Laborforschung für die Industrie? „Wenn es etablierte Technologien gibt, ist es zunächst immer schwer, etwas zu ändern“, sagt Marcus Bär. „Aber wir zeigen hier, wie sich mit überschaubarem Aufwand die Stabilität der Anoden erhöhen lässt.“

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • HZB-Postdoc Feng Liang erhält Professur an der Xi'an Jiaotong University
    Nachricht
    07.03.2025
    HZB-Postdoc Feng Liang erhält Professur an der Xi'an Jiaotong University
    Seit 2021 forscht Dr. Feng Liang am HZB-Institut für Solare Brennstoffe. Nun hat er einen Ruf an das Green Hydrogen Innovation Center der Fakultät für Maschinenbau der Xi'an Jiaotong University in China erhalten. Ab Juni 2025 baut er dort ein eigenes Forschungsteam auf.
  • Strategisches Positionspapier zur Stärkung der Solarindustrie
    Nachricht
    06.03.2025
    Strategisches Positionspapier zur Stärkung der Solarindustrie
    Frankfurt, 06. März 2025 – Die führenden deutschen Solarforschungseinrichtungen, die Fachabteilung „Photovoltaik Produktionsmittel“ des Industrieverbands VDMA und das Produktionsplanungs-Unternehmen RCT Solutions, haben ein gemeinsames Positionspapier zur Stärkung der deutschen und europäischen Solarindustrie veröffentlicht. Dieses wird nun an die Parteien übermittelt, die nach der Bundestagswahl im Bundestag vertreten sind. Ziel ist es, die vorgeschlagenen Maßnahmen in die Koalitionsverhandlungen einzubringen und damit die Grundlage für eine widerstandsfähige und wettbewerbsfähige Solarindustrie in Deutschland zu schaffen.
  • Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Science Highlight
    25.02.2025
    Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.