Bildgebung mit Neutronen: Magnetische Domänen erstmals in 3-D sichtbar

Die Grenzen der magnetischen Dom&auml;nen k&ouml;nnen am Computer<br />dreidimensional dargestellt werden.<br />

Die Grenzen der magnetischen Domänen können am Computer
dreidimensional dargestellt werden.
© HZB/Manke, Grothausmann

Bisher konnten magnetische Domänen nur zweidimensional abgebildet werden. Wissenschaftlern des Helmholtz-Zentrum Berlin (HZB) ist es nun gelungen, diese Bereiche im Inneren von magnetischen Stoffen zum ersten Mal dreidimensional darzustellen. Sie publizieren dies in der Zeitschrift Nature Communications.

Obwohl sie in fast jedem magnetischen Material zu finden sind, kann man sie nicht sehen: Magnetische Domänen sind mikroskopisch kleine, magnetisierte Bereiche. Jedes magnetische Material, ist in solche Domänen aufgeteilt. Wissenschaftler nennen sie „Weiss´sche Bezirke“, nach dem Physiker Pierre-Ernest Weiss, der ihre Existenz vor über hundert Jahren theo­retisch vorhergesagt hatte. 1907 erkannte er, dass die magnetischen Momente der Atome innerhalb eines begrenzten Bezirks gleich ausgerichtet sind.

Diese Theorie konnte bislang nur mit zweidimensionalen Bildern und an Materialoberflächen nachverfolgt werden. Dr. Ingo Manke und sein Team am Institut Angewandte Materialforschung des HZB haben gemeinsam mit Kollegen der Bundesanstalt für Materialforschung und dem Paul-Scherrer Institut eine Methode entwickelt, mit der sie die magnetischen Domänen vollständig in ihrer räumlichen Struktur darstellen können – auch im Materialinneren. Dafür wurden am Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden spezielle Eisensilizium-Kristalle hergestellt, für deren innere Domänenstruktur die Forscher in der Arbeitsgruppe von Dr. Schäfer bereits Modellvorstellungen entwickelt hatten, deren tatsächliche Existenz nun erstmals nachgewiesen werden konnte.  Damit lösen die Forscher ein Jahrzehnte altes Problem in der Bildgebung. Sie publi­zieren dies in der Zeitschrift Nature Communications (DOI: 10.1038 /ncomms1125).

Die meisten magnetischen Stoffe bestehen aus einem komplexen Netzwerk magnetischer Domänen. Die von den Wissenschaftlern entwickelte Methode nutzt die Bereiche aus, in denen die Bezirke aneinanderstoßen – sogenannte Domänengrenzen. Innerhalb einer Domäne sind alle magnetischen Momente gleich, von Domäne zu Domäne ist die magnetische Ausrichtung aber ver­schieden. An jeder Domänengrenze wech­selt also die Richtung des Magnet­feldes. Diese Änderungen nutzen die Forscher für ihr radiografisches Verfahren, bei dem sie statt Licht Neutronen verwenden.

Magnetische Felder lenken die Neutronen in ihrer Flugrichtung leicht ab, genauso wie Licht in Wasser abgelenkt wird: Einen Gegenstand im Wasser kann man daher nicht direkt erkennen. Das Objekt erscheint ver­zerrt und an einem anderem Ort. In ähnlicher Weise überqueren die Neutronen auf ihrem Weg durch das magnetische Material Domänengrenzen. An diesen werden sie in verschiedene Richtungen abgelenkt.

Die Ablenkung ist allerdings ein sehr schwacher Effekt. Im Neutronen-Radiogramm ist er gewöhnlich nicht sichtbar, weil er von nicht abgelenkten Strahlen überlagert wird. Die Forscher setzten daher mehrere Beu­gungsgitter ein, um die abgelenkten Strahlen zu separieren. Während der Messung drehen sie die Probe und durchleuchten sie aus allen Richtungen. Aus den separierten Strahlen können sie alle Domänenformen berechnen und das Domänen-Netzwerk vollständig abbilden.

Magnetische Domänen sind wichtig, um Materialeigenschaften und physika­lische Naturgesetze zu verstehen. Auch im Alltag spielen sie eine wichtige Rolle: vor allem in Speichermedien wie Festplatten und Ladegeräten, beispiels­weise für Laptops oder Elektrofahrzeuge. Wählt man die Eigenschaften der Domänen so, dass möglichst wenig Strom an den Domänengrenzen verloren geht, werden zum Beispiel Ladegeräte  leistungsfähiger.

Franziska Rott

  • Link kopieren

Das könnte Sie auch interessieren

  • Wechselströme für alternatives Rechnen mit Magneten
    Science Highlight
    26.09.2024
    Wechselströme für alternatives Rechnen mit Magneten
    Eine neue Studie der Universität Wien, des Max-Planck-Instituts für Intelligente Systeme in Stuttgart und der Helmholtz-Zentren in Berlin und Dresden stellt einen wichtigen Schritt dar, Computerbauelemente weiter zu miniaturisieren und energieeffizienter zu machen. Die in der renommierten Fachzeitschrift Science Advances veröffentlichte Arbeit zeigt neue Möglichkeiten, reprogrammierbare magnetische Schaltungen zu schaffen, indem Spinwellen durch Wechselströme angeregt und bei Bedarf umgelenkt werden. Die Experimente dafür wurden an der Maxymus-Beamline an BESSY II durchgeführt.
  • BESSY II: Heterostrukturen für die Spintronik
    Science Highlight
    20.09.2024
    BESSY II: Heterostrukturen für die Spintronik
    Spintronische Bauelemente arbeiten mit magnetischen Strukturen, die durch quantenphysikalische Wechselwirkungen hervorgerufen werden. Nun hat eine Spanisch-Deutsche Kooperation Heterostrukturen aus Graphen-Kobalt-Iridium an BESSY II untersucht. Die Ergebnisse belegen, wie sich in diesen Heterostrukturen zwei erwünschte quantenphysikalische Effekte gegenseitig verstärken. Dies könnte zu neuen spintronischen Bauelementen aus solchen Heterostrukturen führen.
  • Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    Science Highlight
    23.08.2024
    Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    In der Materialklasse der Langbeinite wurde eine 3D-Quantenspinflüssigkeit entdeckt. Gründe für dieses ungewöhnliche Verhalten liegen in der kristallinen Struktur und den dadurch bedingten besonderen magnetischen Wechselwirkungen. Dies hat nun ein internationales Team durch Experimente an der Neutronenquelle ISIS und theoretische Modellierungen an einer Nickel-Langbeinit-Probe gezeigt.