Neues Mikroskop beleuchtet Ultrastruktur von Zellen

Der 3-D-Schnitt durch den Kern einer Adenokarzinom-Zelle<br />einer Maus zeigt den Nukleolus (NU) und die quer durch den Kern<br />verlaufenden Membrankanäle (NMC) mittels Röntgen-Nanotomo-<br />graphie.<br />Foto: HZB/Schneider

Der 3-D-Schnitt durch den Kern einer Adenokarzinom-Zelle
einer Maus zeigt den Nukleolus (NU) und die quer durch den Kern
verlaufenden Membrankanäle (NMC) mittels Röntgen-Nanotomo-
graphie.
Foto: HZB/Schneider

Herkömmliche TEM-Aufnahme eines gefärbten Dünnschnitts.<br />Foto: HZB/Schneider

Herkömmliche TEM-Aufnahme eines gefärbten Dünnschnitts.
Foto: HZB/Schneider

HZB-Forscher können kleinste Zellbestandteile in ihrer natürlichen Umgebung sichtbar machen – die Zelle bleibt intakt

Forscher des Helmholtz-Zentrum Berlin (HZB) haben ein neues Mikroskop für die Röntgen-Nanotomographie entwickelt. Mit diesem können sie die Struktur kleinster Bestandteile von Säugetierzellen dreidimensional darstellen. Zum ersten Mal wird die Zelle, um sie zu untersuchen, nicht chemisch fixiert, eingefärbt oder zerschnitten. Stattdessen wird sie intakt tiefgefroren und in ihrer natürlichen Umgebung erforscht. Das neue Verfahren liefert sofort ein 3-D-Bild und schließt so eine Lücke zwischen herkömmlichen Mikroskopie-Verfahren.

Das neue Mikroskop liefert ein hochaufgelöstes 3-D-Bild der gesamten Zelle in einem Schritt. Dies ist ein Vorteil gegenüber der Elektronenmikroskopie, bei der ein 3-D-Bild aus vielen Dünnschnitten zusammengestellt wird. Dies kann mehrere Wochen pro Zelle dauern. Anders als bei der Fluoreszenz-Mikroskopie wird die Zelle auch nicht mit Farbstoffen markiert, wobei immer nur die markierten Strukturen dargestellt werden. Das neue Röntgenmikroskop nutzt vielmehr den natürlichen Kontrast zwischen organischer Materie und Wasser, um alle Zellstrukturen abzubilden. Dr. Gerd Schneider und sein Mikroskopie-Team am Institut für Weiche Materie und Funktionale Materialien publi­zieren ihre Entwicklung in der Zeitschrift Nature Methods (DOI:10.1038/nmeth.1533).

Mit der hohen Auflösung, die das Mikroskop erreicht, konnten die Wissen­schaftler in Zusammenarbeit mit Kollegen des amerikanischen National Cancer Instituts Zellbestandteile eines Adenokarzinoms bei Mäusen dreidimensional rekonstruieren. Kleinste Details wurden sichtbar: die Doppelmembran des Zell­kerns, Kernporen in der Zellkernhülle, Membrankanäle im Zellkern, innere Aus­stülpungen der Mitochondrien und Einschlüsse in Zellorganellen wie Lyso­so­men. Solche Einblicke sind nützlich, um innerzelluläre Vorgänge zu beleuch­ten: beispielsweise wie Viren oder Nanopartikel in Zellen oder in den Zellkern eindringen.

Damit gelang es zum ersten Mal, mit Röntgenstrahlung die sogenannte Ultra­struktur von Zellen bis auf 30 Nanometer genau abzubilden. Zehn Nanometer entsprechen ungefähr einem Zehntausendstel der Stärke eines menschlichen Haares. Der Begriff Ultrastruktur verdeutlicht, dass es sich um kleinste Zell­bestandteile handelt.

Die hohe 3-D-Auflösung erreichen die Forscher, indem sie die tiefgefrorenen Objektstrukturen mit teilkohärentem Licht beleuchten. Dieses wird von BESSY II, der Synchrotronquelle des HZB erzeugt. Teilkohärenz ist die Fähigkeit von Lichtbündeln, sich gegenseitig zu überlagern. Durch die Ausleuchtung der Proben mit teilkohärentem Licht werden die Objektkontraste für sehr kleine Strukturen deutlich größer als mit inkohärentem Licht. Kombiniert mit einer hochauflösenden Optik, konnten die Forscher die Feinstrukturen der Zellen mit einem bisher unerreicht hohen Kontrast darstellen.

Das neue Röntgenmikroskop bietet außerdem mehr Raum rund um die Probe, was zu einer besseren räumlichen Betrachtung führt. Der Raum war bisher durch die Art der Ausleuchtung stark eingeschränkt, weil das notwendige monochromatische Röntgenlicht mit Hilfe eines radialen Gitters erzeugt wurde. Eine Blende selektierte aus diesem Licht den gewünschten Bereich der Lichtwellen. Sie war so dicht vor der Probe platziert, dass man die Probe kaum drehen konnte. Diesen Aufbau haben die Forscher geändert. Ein neuartiger Kondensor, der das Objekt beleuchtet, wird nun direkt mit monochromatischem Licht bestrahlt, die Blende entfällt. So lässt sich die Probe bis zu 158 Grad drehen und räumlich betrachten.

Mit diesen Entwicklungen steht der modernen Strukturbiologie ein neues Werkzeug zum besseren Verständnis des Aufbaus von Zellen zur Verfügung.

Franziska Rott

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.
  • Beschleunigerphysik: Erster Elektronenstrahl im SEALab
    Nachricht
    03.04.2025
    Beschleunigerphysik: Erster Elektronenstrahl im SEALab
    Weltweit zum ersten Mal hat das SEALab-Team am HZB in einem supraleitenden Hochfrequenzbeschleuniger (SRF Photoinjektor) einen Elektronenstrahl aus einer Multi-Alkali-Photokathode (Na-K-Sb) erzeugt und auf relativistische Energien beschleunigt. Dies ist ein echter Durchbruch und eröffnet neue Optionen für die Beschleunigerphysik.