Wärmedämmung für Quantentechnologien

Elektronenmikroskopische Aufnahme einer Silizium-Probe mit Nanokristalliten unterschiedlicher Orientierung (farbig), Poren (schwarz) und dem von der Bildbearbeitungssoftware erkannten Porennetzwerk (weiße Gitterlinien).

Elektronenmikroskopische Aufnahme einer Silizium-Probe mit Nanokristalliten unterschiedlicher Orientierung (farbig), Poren (schwarz) und dem von der Bildbearbeitungssoftware erkannten Porennetzwerk (weiße Gitterlinien). © D. Kojda / HZB

Neue energieeffiziente IT-Bauelemente arbeiten häufig nur bei extrem tiefen Temperaturen stabil. Daher kommt es entscheidend auf eine sehr gute Wärmeisolierung solcher Elemente an, was die Entwicklung von Materialien mit extrem niedriger Wärmeleitfähigkeit erfordert. Ein Team am HZB hat nun mit einem neuartigen Sinterverfahren nanoporöse Silizium-Aluminium-Proben hergestellt, in welchen Poren und Nanokristallite den Transport von Wärme behindern und so die Wärmeleitfähigkeit drastisch reduzieren. Die Forschenden haben ein Modell für die Vorhersage der Wärmeleitfähigkeit entwickelt, das anhand von Messdaten zur Mikrostruktur der Proben und deren Wärmeleitfähigkeit bestätigt wurde. Damit liegt erstmals eine Methode für die gezielte Entwicklung von komplexen porösen Materialien mit ultraniedriger Wärmeleitfähigkeit vor.

 

Wärmedämmung ist nicht nur für Gebäude wichtig, sondern auch in den Quantentechnologien. Während die Dämmplatten um ein Haus die Heizwärme im Haus halten, geht es bei Quantenbauelementen um eine Isolierung gegen die Wärme aus der Außenwelt, da viele Quanteneffekte nur bei tiefer Temperatur stabil sind. Gesucht werden also Materialien mit extrem geringer Wärmeleitfähigkeit, die außerdem kompatibel mit den in der Quantentechnologie genutzten Materialien sind.

Neuartiges Sinterverfahren

Auf diesem Weg ist nun ein Team um Dr. Klaus Habicht aus dem HZB einen großen Schritt vorangekommen. Mit einem neuartigen Sinterverfahren stellten sie Proben aus Silizium und Silizium-Aluminium her, die unter Druck und einem elektrischen Feld für wenige Minuten unter hoher Temperatur verpresst wurden. Davor wurden dem Si-Ausgangsmaterial mittels elektrochemischen Ätzverfahren weitere Mikrostrukturen hinzugefügt, die den Wärmetransport noch weiter unterdrücken. „Silizium ist aus vielen Gründen hier das ideale Material, insbesondere passt es zu möglichen Bauelementen, die auf Silizium Qubits beruhen“, betont Habicht.

Hindernisse für Phononen

So erhielten sie eine Reihe von Materialproben mit winzigen Poren, kristallinen Nanopartikeln und so genannten Domänengrenzen. Wärmeleitung funktioniert über Schwingungen im Kristallgitter. In der Physik spricht man von Phononen. Diese Phononen können sich jedoch nur ausbreiten, wenn sie nicht auf Hindernisse stoßen, an denen sie gestreut werden. Sowohl Poren als auch Nanopartikel und Domänengrenzen können bei passenden Abständen und Durchmessern zu solchen Streuzentren werden und damit die Wärmeleitung reduzieren.

Beiträge von Poren und Nanopartikeln

Mit einem eleganten Modell berechneten die Forschenden das Verhalten der Phononen und damit die Wärmeleitfähigkeit in unterschiedlichen Proben. Deren Mikrostruktur floss mit Parametern wie Größe und Abstand von Poren und Nanopartikeln ein. „Bei diesem Modell können wir die Beiträge von Nanopartikeln und Poren zur Wärmeleitfähigkeit deutlich voneinander trennen“, erklärt Habicht.

Mikrostrukturen im Detail ausgewertet

Die experimentellen Ergebnisse zu Mikrostrukturen und Wärmeleitfähigkeit in den einzelnen Proben bestätigen das neue Modell. Die Mikrostrukturen bestimmte Erstautor Danny Kojda am Rasterelektronenmikroskop des HZB. Mit einer speziellen dafür von ihm weiterentwickelten Bildauswertungssoftware ermittelte er Größe und Anzahl von Nanopartikeln und Poren, sowie deren Abstand. Die Wärmeleitfähigkeit in Abhängigkeit von der Temperatur wurde in allen Proben sorgfältig gemessen. Die Messdaten passten extrem gut zu den modellierten Ergebnissen. Damit lässt sich nunmehr bestimmen, ob in einer Probe mit gegebener Mikrostruktur vor allem die Poren oder doch mehr die Nanokristallite ursächlich für die Unterdrückung der Wärmeleitung sind.

Gezieltes Materialdesign

„Das Verständnis der grundlegenden Transportprozesse hilft uns dabei, maßgeschneiderte Materialien mit stark reduzierter Wärmeleitfähigkeit zielgerichtet herzustellen und weiter zu entwickeln“, sagt Kojda.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Science Highlight
    14.04.2025
    Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Diamanten mit spezifischen Defekten können als hochempfindliche Sensoren oder Qubits für Quantencomputer genutzt werden. Die Quanteninformation wird dabei im Elektronenspin-Zustand der Defekte gespeichert. Allerdings müssen die Spin-Zustände bislang optisch ausgelesen werden, was extrem aufwändig ist. Nun hat ein Team am HZB eine elegantere Methode entwickelt, um die Quanteninformation über eine Photospannung auszulesen. Dies könnte ein deutlich kompakteres Design von Quantensensoren ermöglichen.
  • Beschleunigerphysik: Erster Elektronenstrahl im SEALab
    Nachricht
    03.04.2025
    Beschleunigerphysik: Erster Elektronenstrahl im SEALab
    Weltweit zum ersten Mal hat das SEALab-Team am HZB in einem supraleitenden Hochfrequenzbeschleuniger (SRF Photoinjektor) einen Elektronenstrahl aus einer Multi-Alkali-Photokathode (Na-K-Sb) erzeugt und auf relativistische Energien beschleunigt. Dies ist ein echter Durchbruch und eröffnet neue Optionen für die Beschleunigerphysik.