Vogt, J.-M.; Kugeler, O.; Knobloch, J.: High-Q operation of superconducting rf cavities: Potential impact of thermocurrents on the rf surface resistance. Physical Review Special Topics - Accelerators and Beams 18 (2015), p. 042001/1-11
10.1103/PhysRevSTAB.18.042001
Open Access Version
Abstract:
For many new accelerator applications, superconducting radio frequency systems are the enabling technology. In particular for CW applications, much effort is being expended to minimize the power dissipation (surface resistance) of niobium cavities. Starting in 2009, we suggested a means of reducing the residual resistance by performing a thermal cycle [O. Kugeler et al., in Proceedings of the 14th International Conference on RF Superconductivity (2009), p. 352], a procedure of warming up a cavity after initial cooldown to about 20 K and cooling it down again. In subsequent studies [J. M. Vogt, O. Kugeler, and J. Knobloch, Phys. Rev. ST Accel. Beams 16, 102002 (2013)], this technique was used to manipulate the residual resistance by more than a factor of 2. It was postulated that thermocurrents during cooldown generate additional trapped magnetic flux that impacts the cavity quality factor. Here, we present a more extensive study that includes measurements of two additional passband modes and that confirms the effect. In this paper, we also discuss simulations that support the claim. While the layout of the cavity LHe tank system is cylindrically symmetric, we show that the temperature dependence of the material parameters results in a nonsymmetric current distribution. Hence a significant amount of magnetic flux can be generated at the rf surface.