Rainforest mushrooms as weather makers

With the help of HZB’s x-ray microscope, MAXYMUS, MPIC<br />scientists in Mainz, Germany, recently decoded the methods<br />used by mushrooms and plants to influence Amazon rainforest<br />cloud formation. Organic substances condense on mushroom and<br />plant derived potassium salts resulting in production of<br />aerosol particles. On these, fog droplets form.<br />

With the help of HZB’s x-ray microscope, MAXYMUS, MPIC
scientists in Mainz, Germany, recently decoded the methods
used by mushrooms and plants to influence Amazon rainforest
cloud formation. Organic substances condense on mushroom and
plant derived potassium salts resulting in production of
aerosol particles. On these, fog droplets form.
© Christopher Pöhlker / MPI für Chemie

Whereas in urban areas, soot or dust particles often double as condensation nuclei, in rain-forests, it is mainly organic evaporations from plants, which periodically trigger fog or cloud formation. Now, at HZB’s BESSY II, Max Planck Institute for Chemistry scientists have shown that inorganic salts also play a role in the process. It appears that tiny potas-sium salt particles make up the core of cloud condensation nuclei in the rainforest. These kinds of salts are evaporated by mushrooms and plants as a way of influencing the number of condensation nuclei and, by extension, affecting cloud formation and precipitation over the rainforest.

Christopher Pöhlker, a Ph.D. student in Dr. Ulrich Pöschl’s and Prof. Dr. Meinrat O. Andreae’s lab at the Max Planck Institute for Chemistry, recently made the discovery using a new aerosol analytical method at HZB’s BESSY II x-ray microscope, MAXYMUS, and at the Lawrence Berkeley National Laboratory’s synchrotron radiation source in California, USA.

Pöhlker examined organic aerosol particles that were collected from air filters and small, paper-thin plates in the untouched Brazilian rainforest north of Manaus, which allowed the chemist to precisely measure the particles’ potassium content. “We identified three different kinds of or-ganic aerosol particles and they all contained potassium salts,“ Pöhlker explains. “Our initial focus was on the organic material’s carbon, oxygen, and nitrogen content. But then, to our surprise, we found its potassium content to be extremely high – almost 20 percent!“ Internal structures inside the nanometer- to micrometer-size particles point to the fact that during oxidation and condensation of organic gas molecules, multi-phase processes also play a role – which involve different chemical phases like fog or cloud water and other gel-like organic substances. The results will help with the identification and quantification of the sources and impact of organic aerosol particles under pre-industrial conditions. This in turn can help scientists understand how the rainforest’s continental and regional climate works and its role in Earth’s “climate machine.“

Publication: Science 31st August 2012 “Biogenic potassium salt particles as seeds for secondary organic aerosol in the Amazon,”
http://www.sciencemag.org/content/337/6098/1075.abstract

Contact and further information:

Christopher Pöhlker: c.pohlker@­mpic.de; Tel.: 06131 305-6303

Dr. Ulrich Pöschl: u.poschl@­mpic.de; Tel.: 06131 305-6201

arö

  • Copy link

You might also be interested in

  • Solar cells on moon glass for a future base on the moon
    Science Highlight
    07.04.2025
    Solar cells on moon glass for a future base on the moon
    Future settlements on the moon will need energy, which could be supplied by photovoltaics. However, launching material into space is expensive – transporting one kilogram to the moon costs one million euros. But there are also resources on the moon that can be used. A research team led by Dr. Felix Lang of the University of Potsdam and Dr. Stefan Linke of the Technical University of Berlin have now produced the required glass from ‘moon dust’ (regolith) and coated it with perovskite. This could save up to 99 percent of the weight needed to produce PV modules on the moon. The team tested the radiation tolerance of the solar cells at the proton accelerator of the HZB.
  • Accelerator Physics: First electron beam in SEALab
    News
    03.04.2025
    Accelerator Physics: First electron beam in SEALab
    The SEALab team at HZB has achieved a world first by generating an electron beam from a multi-alkali (Na-K-Sb) photocathode and accelerating it to relativistic energies in a superconducting radiofrequency accelerator (SRF photoinjector). This is a real breakthrough and opens up new options for accelerator physics.
  • BESSY II: Building block of the catalyst for oxygen formation in photosynthesis reproduced
    Science Highlight
    20.02.2025
    BESSY II: Building block of the catalyst for oxygen formation in photosynthesis reproduced
    In a small manganese oxide cluster, teams from HZB and HU Berlin have discovered a particularly exciting compound: two high spin manganese centres in two very different oxidation states and. This complex is the simplest model of a catalyst that occurs as a slightly larger cluster in natural photosynthesis, where it enables the formation of molecular oxygen. The discovery is considered an important step towards a complete understanding of photosynthesis.