Young investigator group at HZB: Scaling perovskite cells

Dr. Eva Unger leads the Young Investigator Group Hy-Per-FORME.

Dr. Eva Unger leads the Young Investigator Group Hy-Per-FORME. © privat

The new Young Investigator Group Hy-Per-FORME led by Dr. Eva Unger is working on scaling all processing steps to enable manufacturing of perovskite solar cells on larger areas, thus brigding he gap between lab and industry.

Dr. Eva Unger is starting a Young Investigator Group (YIG) at HZB, co-financed by the Federal Ministry for Education and Science (BMBF). The activities of the Unger group will be an important contribution within the newly-founded HySPRINT Innovation lab aiming at the realization of large-area, stable and efficient hybrid tandem device technology based on a combination of established silicon photovoltaic technology and emerging perovskite semiconductor devices.

To achieve this goal, developing and optimizing scalable deposition methods for the recently evolved hybrid perovskite semiconductors is one of the key aspects. The YIG of Unger therefore focusses on the formation and scaling the deposition of hybrid perovskite semiconductors using slot-die coating and ink-jet printing as a solution-based processing technology.

Originally from Germany, Eva Unger did her PhD at Uppsala University, Sweden and carried out postdoctoral work at Stanford University and Lund University through a stipend from the swedish Marcus and Amalia Wallenberg Foundation. Prior to starting the YIG, she has been working as a visiting researcher at Helmholtz Center Berlin funded by an International Career Grant co-funded by the Swedish Research Council and Marie-Skłodowska-Curie Actions. She will be co-affiliated with Lund University, Sweden and aims to strengthen cooperations with Lund University, Vrije Universiteit Amsterdam and the Universities in Berlin and Brandenburg.

red.

  • Copy link

You might also be interested in

  • HZB patent for semiconductor characterisation goes into serial production
    News
    10.10.2024
    HZB patent for semiconductor characterisation goes into serial production
    An HZB team has developed together with Freiberg Instruments an innovative monochromator that is now being produced and marketed. The device makes it possible to quickly and continuously measure the optoelectronic properties of semiconductor materials with high precision over a broad spectral range from the near infrared to the deep ultraviolet. Stray light is efficiently suppressed. This innovation is of interest for the development of new materials and can also be used to better control industrial processes.
  • Photovoltaic living lab reaches the 100 Megawatt-hour mark
    News
    27.09.2024
    Photovoltaic living lab reaches the 100 Megawatt-hour mark
    About three years ago, the living laboratory at HZB went into operation. Since then, the photovoltaic facade has been generating electricity from sunlight. On September 27, 2024, it reached the milestone of 100 megawatt-hours.

  • Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    Science Highlight
    09.09.2024
    Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.