Perovskite materials: Neutrons show twinning in halide perovskites

Dr. Michael Tovar working at FALCON at the neutron Source BER II.

Dr. Michael Tovar working at FALCON at the neutron Source BER II. © HZB

The Laue camera captured the diffraction pattern.

The Laue camera captured the diffraction pattern. © HZB

Solar cells based on hybrid halide perovskites achieve high efficiencies. These mixed organic-inorganic semiconductors are usually produced as thin films of microcrystals. An investigation with the Laue camera at the neutron source BER II could now clarify that twinning occurs during crystallisation even at room temperature. This insight is helpful for optimising production processes of halide perovskites. 

A good ten years ago, research teams discovered the class of semi-organic halide perovskites, which are now making a rapid career as new materials for solar cells. The mixed organic-inorganic semiconductors achieved efficiencies of over 25 percent within a few years. They take their name from their basic structure, which is very similar to that of the mineral perovskite (CaTiO3), but contains other components: halide anions, lead cations and organic molecular cations.

MAPI examined

In the case of the most important compound of the class, methylammonium lead iodide CH3NH3PbI3 (usually abbreviated as MAPI), which was also studied here, the molecular cations are methylammonium cations and the anions are iodide anions. Although more than 4000 publications on halide perovskites have appeared in 2019 alone, it has not yet been possible to fully understand their structure. In the case of MAPI this was attributed, among other things, to the fact that they are produced as polycrystalline films at elevated temperature and it was assumed that twinning occurs when they are cooled to room temperature.

Close examination with neutrons

The formation of twins is complex and can significantly change the material properties. It is therefore exciting to investigate this process more closely. "We have now crystallised MAPI at room temperature and analysed the crystals thus formed with the Laue camera Falcon on BER II," says Dr. Joachim Breternitz, HZB. Together with his colleagues Prof. Susan Schorr and Dr. Michael Tovar, he was able to determine from the data that crystals grown at room temperature also form twins. This gives a new insight into the crystallization and growth process of MAPI. "Our results indicate that the crystallisation nuclei have a higher symmetry than the bulk crystals," explains Breternitz.

With these insights, the synthesis of the technologically important thin films can be specifically optimised.

The neutron source BER II has provided neutrons for research until its scheduled shutdown in December 2019. "This was one of our last experiments at FALCON on BER II and I hope that we were able to make useful contributions right up to the end," says Breternitz.

arö

  • Copy link

You might also be interested in

  • HZB patent for semiconductor characterisation goes into serial production
    News
    10.10.2024
    HZB patent for semiconductor characterisation goes into serial production
    An HZB team has developed together with Freiberg Instruments an innovative monochromator that is now being produced and marketed. The device makes it possible to quickly and continuously measure the optoelectronic properties of semiconductor materials with high precision over a broad spectral range from the near infrared to the deep ultraviolet. Stray light is efficiently suppressed. This innovation is of interest for the development of new materials and can also be used to better control industrial processes.
  • Photovoltaic living lab reaches the 100 Megawatt-hour mark
    News
    27.09.2024
    Photovoltaic living lab reaches the 100 Megawatt-hour mark
    About three years ago, the living laboratory at HZB went into operation. Since then, the photovoltaic facade has been generating electricity from sunlight. On September 27, 2024, it reached the milestone of 100 megawatt-hours.

  • Alternating currents for alternative computing with magnets
    Science Highlight
    26.09.2024
    Alternating currents for alternative computing with magnets
    A new study conducted at the University of Vienna, the Max Planck Institute for Intelligent Systems in Stuttgart, and the Helmholtz Centers in Berlin and Dresden takes an important step in the challenge to miniaturize computing devices and to make them more energy-efficient. The work published in the renowned scientific journal Science Advances opens up new possibilities for creating reprogrammable magnonic circuits by exciting spin waves by alternating currents and redirecting these waves on demand. The experiments were carried out at the Maxymus beamline at BESSY II.