Disorder brings out quantum physical talents

The Dirac cone is typical for topological insulators and is practically unchanged on all 6 images (ARPES measurements at BESSY II). The blue arrow additionally shows the valence electrons in the volume. The synchrotron light probes both and can thus distinguish the Dirac cone at the surface (electrically conducting) from the three-dimensional volume (insulating).

The Dirac cone is typical for topological insulators and is practically unchanged on all 6 images (ARPES measurements at BESSY II). The blue arrow additionally shows the valence electrons in the volume. The synchrotron light probes both and can thus distinguish the Dirac cone at the surface (electrically conducting) from the three-dimensional volume (insulating). © HZB

Quantum effects are most noticeable at extremely low temperatures, which limits their usefulness for technical applications. Thin films of MnSb2Te4, however, show new talents due to a small excess of manganese. Apparently, the resulting disorder provides spectacular properties: The material proves to be a topological insulator and is ferromagnetic up to comparatively high temperatures of 50 Kelvin, measurements at BESSY II show.  This makes this class of material suitable for quantum bits, but also for spintronics in general or applications in high-precision metrology.

Quantum effects such as the anomalous quantum Hall effect enable sensors of highest sensitivity, are the basis for spintronic components in future information technologies and also for qubits in quantum computers of the future. However, as a rule, the quantum effects relevant for this only show up clearly enough to make use of them at very low temperatures near absolute zero and in special material systems.

Quantum effects up to 50 K

Now, an international team led by HZB physicist Prof. Dr. Oliver Rader and Prof. Dr. Gunther Springholz, University of Linz, has observed two particularly important physical properties in thin films of MnSb2Te4: Such doped structures are robust topological insulators and also ferromagnetic up to almost 50 Kelvin.  "According to the theoretical considerations published so far, the material should be neither ferromagnetic nor topological," says Rader. "However, we have now experimentally demonstrated exactly these two properties."

Disorder makes the difference

The group combined measurements of spin- and angle-resolved photoemission spectroscopy (ARPES) and magnetic X-ray circular dichroism (XMCD) at BESSY II, examined the surfaces with scanning tunnelling microscopy (STM) and spectroscopy (STS), and carried out further investigations. "We can see that the additional manganese atoms have led to a certain disorder. This explains why the theoretical observation came to a different result - the theory assumed an ideally ordered structure, which is not realised" says Rader.

The properties are extraordinarily robust and occur up to a temperature of just under 50 K, which is three times higher than the best ferromagnetic systems before (see Nature, 2019). This makes this material an interesting candidate for spintronics and even qubits.

arö

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.