A Wiki for Perovskite Solar Cell Research

An international team of experts has collected data on metal halide perovskite solar cells from more than 15,000 publications and developed a database with visualisation options and analysis tools. The database is open source and provides an overview of the rapidly growing knowledge as well as the open questions in this exciting class of materials. The study was initiated by HZB scientist Dr. Eva Unger and implemented and coordinated by her postdoc Jesper Jacobsson.


Halide perovskites have huge potential for solar cells and other optoelectronic applications. Solar cells based on metal-organic perovskites achieve efficiencies of more than 25 percent, they can be produced cheaply and with minimal energy consumption, but still require improvements in terms of stability and reliability. In recent years, research on this class of materials has boomed, producing a flood of results that is almost impossible to keep track of by traditional means. Under the keyword "perovskite solar", more than 19,000 publications had already been entered in the Web of Science (spring 2021).

FAIR data

Now 95 experts from more than 30 international research institutions have designed a database to systematically record findings on perovskite semiconductors. The data are prepared according to the FAIR principles, i.e. they are findable, accessible, interoperable and reusable. By reading the existing literature, the experts have collected more than 42,000 individual data sets, in which the data can be filtered and displayed according to various criteria such as material compositions or component type. Researchers from several teams at HZB were involved in this Herculean task.

New insights by AI

"Data has always been the basis of empirical science, but when data is collected in sufficiently large quantities and in a coherent way, it can be searched with modern algorithms and artificial intelligence and can provide completely new insights," says Jesper Jacobsson, coordinator of this project.

Interactive tools, easy uploads

The database provides analysis tools and graphical data visualizations that enable easy and interactive exploration, and also offers the option to easily upload new data from new peer-reviewed publications. "It's a wiki for perovskite solar cell research," says Eva Unger, counting on the participation of the research community: "In the future, this type of research data platform will offer us the opportunity to make our research data public according to FAIR principles in addition to established publication formats."

Not only science, but also industry will benefit: The database provides an overview of the current state of knowledge, while also uncovering gaps in knowledge from which new productive research questions can arise.

arö

  • Copy link

You might also be interested in

  • HZB patent for semiconductor characterisation goes into serial production
    News
    10.10.2024
    HZB patent for semiconductor characterisation goes into serial production
    An HZB team has developed together with Freiberg Instruments an innovative monochromator that is now being produced and marketed. The device makes it possible to quickly and continuously measure the optoelectronic properties of semiconductor materials with high precision over a broad spectral range from the near infrared to the deep ultraviolet. Stray light is efficiently suppressed. This innovation is of interest for the development of new materials and can also be used to better control industrial processes.
  • Photovoltaic living lab reaches the 100 Megawatt-hour mark
    News
    27.09.2024
    Photovoltaic living lab reaches the 100 Megawatt-hour mark
    About three years ago, the living laboratory at HZB went into operation. Since then, the photovoltaic facade has been generating electricity from sunlight. On September 27, 2024, it reached the milestone of 100 megawatt-hours.

  • BESSY II: Heterostructures for Spintronics
    Science Highlight
    20.09.2024
    BESSY II: Heterostructures for Spintronics
    Spintronic devices work with spin textures caused by quantum-physical interactions. A Spanish-German collaboration has now studied graphene-cobalt-iridium heterostructures at BESSY II. The results show how two desired quantum-physical effects reinforce each other in these heterostructures. This could lead to new spintronic devices based on these materials.