Öffnet in neuem Fenster Opens in a new window Öffnet externe Seite Opens an external site Öffnet externe Seite in neuem Fenster Opens an external site in a new window

Investigator Group Oxygen Evolution Mechanism Engineering

Green Electrocatalysis and Electrodeposition

Competence green electrocatalysis

Photo(electro)catalyst benchmarking

  • Various own and literature protocols for benchmarking activity, selectivity and stability with NOMAD database integration
  • Accelerated stability tests
  • Round-robin studies
  • Catalyst materials benchmarking using rotating ring-disk electrodes or rotating disk electrodes
  • Electrode benchmarking in alkaline zero-gap electrolyzer
  • Electrode benchmarking in photoelectrochemical cell
  • Three dedicated workspaces for materials benchmarking, electrolyzer benchmarking and photoelectrode benchmarking
  • Many fruitful collaborations within the materials and electrocatalysis communities

Example publications
M. Risch “Reporting activities for the oxygen evolution reaction”, Commun. Chem. (2023), doi: 10.1038/s42004-023-01024-y

M. Risch “Upgrading the detection of electrocatalyst degradation during the oxygen evolution reaction”, Curr. Op. Electrochem. (2023), doi: 10.1016/j.coelec.2023.101247

D. H. Taffa, E. Brim, K. K. Rücker, D. Hayes, J. Lorenz, O. Bisen, M. Risch, C. Harms, R. M. Richards and M. Wark “Influence of Annealing Temperature on the OER Activity of NiO(111) Nanosheets Prepared via Microwave and Solvothermal Synthesis Approaches”, ACS Appl. Mater. Interfaces  (2024), doi: 10.1021/acsami.4c14277

 

Key reactions for green fuels and chemicals

All reactions are studied in aqueous electrolytes near room temperature with explicit product detection

  • Green hydrogen production
    electrocatalytic and photoelectrocatalytic water oxidation by oxygen evolution (WOR, OER)
  • Ammonia as an alternative energy carrier and fertilizer
    Electrocatalytic nitrogen reduction  (NRR, N2RR)
    Electrocatalytic nitrate reduction (NO3RR)
  • Peroxide as a medical and chemical feedstock
    Electrocatalytic oxygen reduction to peroxide and hydroxide (ORR)

Example publications
B. Wu, D.M. Morales, M. Liu, D. Xie, P. Feng, Y. Lu, M. Risch, M. Oschatz, T. Petit “Metal-free carbon-nitrogen@ carbon-type hybrid electrocatalysts for peroxide-producing oxygen reduction reaction”, Carbon Future (2024), doi: 10.26599/CF.2024.9200022

M. Risch “Reporting activities for the oxygen evolution reaction”, Commun. Chem. (2023), doi: 10.1038/s42004-023-01024-y

D. Antipin, M. Risch* „Trends of epitaxial perovskite oxide films catalyzing the oxygen evolution reaction in alkaline media“, J. Phys. Energy (2020), doi: 10.1088/2515-7655/ab812f

Mechanistic investigations 

  • NOMAD database to organize metadata
  • pH-dependent studies to determine reaction order
  • Temperature-dependent studies to determine activation energy, enthalpy and entropy
  • Materials changes and changes of metal oxidation state from operando/in situ X-ray spectroscopy

Example publications
J. Du, J. Morales-Santelices, O.Y. Bisen, D. Antipin, D.M. Morales, M. Risch “In situ UV–Vis absorption spectroscopy study of the water electrooxidation on cobalt oxide catalysts”, Electrochim. Acta (2025), doi: 10.1016/j.electacta.2024.145489doi: 10.1016/j.electacta.2024.145489

O.Y. Bisen, M. Baumung, M. Tatzel, C.A. Volkert, M. Risch (2024) „Manganese dissolution in alkaline medium with and without concurrent oxygen evolution in LiMn2O4“, Energy Adv. (2024), doi: 10.1039/D3YA00434A

J. Morales-Santelices, M. Risch “Measurement of Enthalpy and Entropy of a Model Electrocatalyst for the Oxygen Evolution Reaction”, ChemCatChem (2024), doi: 10.1002/cctc.202301578

D. Antipin & M. Risch “Calculation of the Tafel slope and reaction order of the oxygen evolution reaction between pH 12 and pH 14 for the adsorbate mechanism”, Electrochem. Sci. Adv. (2022), doi: 10.1002/elsa.202100213

J. Villalobos et al., “Requirements for Beneficial Electrochemical Restructuring: A Model Study on a Cobalt Oxide in Selected Electrolytes”, Adv. Energy Mater. (2021), doi: 10.1002/aenm.202101737

Electrodeposition of functional oxides

  • Protocol for repeated multistep galvanostatic deposition, typically one seed step and a loop between growth and relaxation steps
  • Defined electrodeposition of transition metal oxide thin films in alkaline and neutral media
  • Dedicated workspace for electrodeposition

Example publications
J. Villalobos, D.M. Morales, D. Antipin, G. Schuck, R. Golnak, J. Xiao, M Risch “Stabilization of a Mn-Co oxide during oxygen evolution in alkaline media”, ChemElectroChem (2022), doi: 10.1002/celc.202200482

J. Villalobos, R. Golnak, L. Xi, G. Schuck, M. Risch* „Reversible and irreversible processes during cyclic voltammetry of an electrodeposited manganese oxide as catalyst for the oxygen evolution reaction“, J. Phys. Energy (2020), doi: 10.1088/2515-7655/ab9fe2

Electrochemistry education

  • Tutorial publications
  • Organization of workshops

Example publications
D.M. Morales, M. Risch, „Seven steps to reliable cyclic voltammetry measurements for the determination of double layer capacitance“, J. Phys. Energy (2020), doi: 10.1088/2515-7655/abee33

M. Risch, D.M. Morales, J. Villalobos, D. Antipin, „What X‐ray absorption spectroscopy can tell us about the active state of earth‐abundant electrocatalysts for the oxygen evolution reaction“, Angew. Chem., Int. Ed.  (2022), doi: 10.1002/anie.202211949