CryoEXAFS

CryoEXAFS

Publications

2024

Smekhova, A.; Gaertner, D.; Kuzmin, A.; Guilherme Buzanich, A.; Schuck, G.; Zizak, I.; Wilde, G.; Yusenko, K.; Divinski, S.: Anomalies in the short-range local environment and atomic diffusion in single crystalline equiatomic CrMnFeCoNi high-entropy alloy. , Nano Research 17 (2024), p. 5336–5348
doi: 10.1007/s12274-024-6443-6

2023

Ou, Y.; Twight, L.P.; Samanta, B.; Liu, L.; Biswas, S.; Fehrs, J.L.; Sagui, N.A.; Villalobos, J.; Morales-Santelices, J.; Antipin, D.; Risch, M.; Toroker, M.C.; Boettcher, S.W.: Cooperative Fe sites on transition metal (oxy)hydroxides drive high oxygen evolution activity in base. , Nature Communications 14 (2023), p. 7688/1-12
doi: 10.1038/s41467-023-43305-z
Data-doi: 10.6084/m9.figshare.24197487

Füngerlings, A.; Wohlgemuth, M.; Antipin, D.; van der Minne, E.; Kiens, E.M.; Villalobos, J.; Risch, M.; Gunkel, F.; Pentcheva, R.; Baeumer, C.: Crystal-facet-dependent surface transformation dictates the oxygen evolution reaction activity in lanthanum nickelate. , Nature Communications 14 (2023), p. 8284/1-13
doi: 10.1038/s41467-023-43901-z
Data-doi: 10.4121/2da7626a-00a6-4f4f-95b1-d9ccbfbe7993
Data-doi: 10.17172/NOMAD/2023.11.17-1

Battistella, B.; Iffland-Mühlhaus, L.; Schütze, M.; Cula, B.; Kuhlmann, U.; Dau, H.; Hildebrandt, P.; Lohmiller, T.; Mebs, S.; Apfel, U.P.; Ray, K.: Evidence of Sulfur Non-Innocence in [Co-II(dithiacyclam)]2+-Mediated Catalytic Oxygen Reduction Reactions. , Angewandte Chemie - International Edition 62 (2023), p. e20221407/1-7
doi: 10.1002/anie.202214074

Kass, D.; Yao, S.; Krause, K.B.; Corona, T.; Richter, L.; Braun, T.; Mebs, S.; Haumann, M.; Dau, H.; Lohmiller, T.; Limberg, C.; Drieß, M.; Ray, K.: Spectroscopic Properties of a Biologically Relevant [Fe2(μ-O)2] Diamond Core Motif with a Short Iron-Iron Distance. , Angewandte Chemie - International Edition 62 (2023), p. e202209437/1-6
doi: 10.1002/anie.202209437

2022

Haase, F.T.; Rabe, A.; Schmidt, F.P.; Herzog, A.; Jeon, H.S.; Frandsen, W.; Narangoda, P.V.; Spanos, I.; Friedel Ortega, K.; Timoshenko, J.; Lunkenbein, T.; Behrens, M.; Bergmann, A.; Schlögl, R.; Roldan Cuenya, B.: Role of Nanoscale Inhomogeneities in Co2FeO4 Catalysts during the Oxygen Evolution Reaction. , Journal of the American Chemical Society 144 (2022), p. 12007-12019
doi: 10.1021/jacs.2c00850

Heymann, L.; Weber, M.L.; Wohlgemuth, M.; Risch, M.; Dittmann, R.; Bauemer, C.; Gunkel, F.: Separating the Effects of Band Bending and Covalency in Hybrid Perovskite Oxide Electrocatalyst Bilayers for Water Electrolysis. , ACS Applied Materials & Interfaces 14 (2022), p. 14129–14136
doi: 10.1021/acsami.1c20337

Villalobos, J.; Morales, D.M.; Antipin, D.; Schuck, G.; Golnak, R.; Xiao, J.; Risch, M.: Stabilization of a Mn-Co Oxide During Oxygen Evolution in Alkaline Media. , ChemElectroChem 9 (2022), p. e202200482/1-13
doi: 10.1002/celc.202200482
Data-doi: 10.6084/m9.figshare.18415520

Villalobos Porras, Javier Francisco: Strategies for stabilization and activation of Mn- and Co-based catalysts for the oxygen evolution reaction. , Berlin, Technische Universität, Diss., 2022
doi: 10.14279/depositonce-16407

Battistella, B.; Warm, K.; Cula, B.; Lu, B.; Hildebrandt, P.; Kuhlmann, U.; Dau, H.; Mebs, S.; Ray, K.: The influence of secondary interactions on the [Ni(O2)]+ mediated aldehyde oxidation reactions. , Journal of Inorganic Biochemistry 227 (2022), p. 111668/1-11
doi: 10.1016/j.jinorgbio.2021.111668

Risch, M.; Morales, D.M.; Villalobos, J.; Antipin, D.: What X-Ray Absorption Spectroscopy Can Tell Us About the Active State of Earth-Abundant Electrocatalysts for the Oxygen Evolution Reaction. , Angewandte Chemie - International Edition 61 (2022), p. e202211949/1-16
doi: 10.1002/anie.202211949
Data-doi: 10.6084/m9.figshare.20393064

2021

Baumung, Max: Correlations between manganese valence and catalytic oxygen evolution of LixMn2O4. , Göttingen, Georg-August-Universität, Diss., 2021
doi: 10.53846/goediss-8768

Villalobos, J.; Gonzalez-Flores, D.; Urcuyo, R.; Montero, M.L.; Schuck, G.; Beyer, P.; Risch, M.: Requirements for Beneficial Electrochemical Restructuring: A Model Study on a Cobalt Oxide in Selected Electrolytes. , Advanced Energy Materials 11 (2021), p. 2101737/1-9
doi: 10.1002/aenm.202101737
Data-doi: 10.6084/m9.figshare.14717997

2020

Schuck, G.; Zizak, I.: CryoEXAFS: X-ray absorption spectroscopy station with cryogenic or in-beam operando electrochemistry sample conditions at BESSY II. , Journal of Large Scale Research Facilities JLSRF 6 (2020), p. A139/1-5
doi: 10.17815/jlsrf-6-176

Kesavan, J.K.; Mosca, D.F.; Sanna, S.; Borgatti, F.; Schuck, G.; Tran, P.M.; Woodward, P.M.; Mitrović, V.F.; Franchini, C.; Boscherini, F.: Doping Evolution of the Local Electronic and Structural Properties of the Double Perovskite Ba2Na1–xCaxOsO6. , The Journal of Physical Chemistry C 124 (2020), p. 16577-16585
doi: 10.1021/acs.jpcc.0c04807

Behrouzi, L.; Bagheri, R.; Reza Mohammadi, M.; Song, Z.; Chernev, P.; Dau, H.; Najafpour, M.N.; Kaboudin, B.: Electrochemical alcohol oxidation mediated by N-hydroxyphthalimide on nickel foam surface. , Scientific Reports 10 (2020), p. 19378/1-11
doi: 10.1038/s41598-020-75397-8

Boniolo, M.; Shylin, S.I.; Chernev, P.; Cheah, M.H.; Heizmann, P.A.; Huang, P.; Salhi, N.; Hossain, K.; Thapper, A.; Lundberg, M.; Messinger, J.: Spin transition in a ferrous chloride complex supported by a pentapyridine ligand. , Chemical Communications 56 (2020), p. 2703-2706
doi: 10.1039/C9CC09630B

Qiao, L.; Zizak, I.; Zaslansky, P.; Ma, Y.: The Crystallization Process of Vaterite Microdisc Mesocrystals via Proto-Vaterite Amorphous Calcium Carbonate Characterized by Cryo-X-ray Absorption Spectroscopy. , Crystals (Basel) 10 (2020), p. 750/1-12
doi: 10.3390/cryst10090750

Zhang, Y.; Qiao, L.; Yan, H.; Zizak, I.; Zaslansky, P.; Li, Y.; Qi, L.; Ma, Y.: Vaterite Microdisc Mesocrystals Exposing the (001) Facet Formed via Transformation from Proto-Vaterite Amorphous Calcium Carbonate. , Crystal Growth & Design 20 (2020), p. 3482-3492
doi: 10.1021/acs.cgd.0c00259

2019

Loos, S.; Zaharieva, I.; Chernev, P.; Lißner, A.; Dau, H.: Electromodified NiFe Alloys as Electrocatalysts for Water Oxidation: Mechanistic Implications of Time-Resolved UV/Vis Tracking of Oxidation State Changes. , ChemSusChem 12 (2019), p. 1966-1976
doi: 10.1002/cssc.201802737

Pasquini, C.; Zaharieva, I.; González-Flores, D.; Chernev, P.; Mohammadi, M.; Guidoni, L.; Smith, R.; Dau, H.: H/D Isotope Effects Reveal Factors Controlling Catalytic Activity in Co-Based Oxides for Water Oxidation. , Journal of the American Chemical Society 141 (2019), p. 2938-2948
doi: 10.1021/jacs.8b10002

Menezez, W.P.; Indra, A.; Zaharieva, I.; Walter, C.; Loos, S.; Hoffmann, S.; Schlögl, R.; Dau, H.; Driess, M.: Helical cobalt borophosphates to master durable overall water-splitting. , Energy & Environmental Science 12 (2019), p. 988-999
doi: 10.1039/c8ee01669k

Abrashev, M.V.; Chernev, P.; Kubella, P.; Mohammadi, M.R.; Pasquini, C.; Dau, H.; Zaharieva, I.: Origin of the heat-induced improvement of catalytic activity and stability of MnOx electrocatalysts for water oxidation. , Journal of Materials Chemistry A 7 (2019), p. 17022-17036
doi: 10.1039/c9ta05108b

Drevon, D.; Goerlin, M.; Chernev, P.; Xi, L.; Dau, H.; Lange, K.M: Uncovering The Role of Oxygen in Ni-Fe(OxHy) Electrocatalysts using In situ Soft X-ray Absorption Spectroscopy during the Oxygen Evolution Reaction. , Scientific Reports 9 (2019), p. 1532/1-11
doi: 10.1038/s41598-018-37307-x

2018

Safdari, R.; Mohammadi, M.R.; Holynska, M.; Chernev, P.; Dau, H.; Najafpour, M.M.: A mononuclear cobalt complex for water oxidation: new controversies and puzzles. , Dalton Transactions 47 (2018), p. 16668-16673
doi: 10.1039/c8dt03147a

Menezes, P.W.; Panda, C.; Loos, S.; Bunschei-Bruns, F.; Walter, C.; Schwarze, M.; Deng, X.; Dau, H.; Driess, M.: A structurally versatile nickel phosphite acting as a robust bifunctional electrocatalyst for overall water splitting. , Energy & Environmental Science 11 (2018), p. 1287-1298
doi: 10.1039/c7ee03619a

Dresp, S.; Dionigi, F.; Loos, S.; de Araujo, J.F.; Spöri, C.; Gliech, M.; Dau, H.; Strasser, P.: Direct Electrolytic Splitting of Seawater: Activity, Selectivity, Degradation, and Recovery Studied from the Molecular Catalyst Structure to the Electrolyzer Cell Level. , Advanced Energy Materials 8 (2018), p. 1800338/1-11
doi: 10.1002/aenm.201800338

Walter, C.; Menezes, P.; Loos, S.; Dau, H.; Driess, M.: Facile Formation of Nanostructured Manganese Oxide Films as High-Performance Catalysts for the Oxygen Evolution Reaction. , ChemSusChem 11 (2018), p. 2554-2561
doi: 10.1002/cssc.201800493

Smith, R.D.L.; Pasquini, C.; Loos, S.; Chernev, P.; Klingan, K.; Kubella, P.; Reza Mohammadi, M.; González-Flores, D.; Dau, H.: Geometric distortions in nickel (oxy)hydroxide electrocatalysts by redox inactive iron ions. , Energy & Environmental Science 11 (2018), p. 2476-2485
doi: 10.1039/c8ee01063c

González-Flores, D.; Klingan, K.; Chernev, P.; Loos, S.; Mohammadi, R.M.; Pasquini, C.; Kubella, P.; Zaharieva, I.; Smith, R.D.L.; Dau, H.: Nickel-iron catalysts for electrochemical water oxidation - redox synergism investigated by in situ X-ray spectroscopy with millisecond time resolution. , Sustainable Energy & Fuels 2 (2018), p. 1986-1994
doi: 10.1039/c8se00114f

Klingan, K.; Kottakkat, T.; Jovanov, Z.P.; Jiang, S.; Pasquini, C.; Scholten, F.; Kubella, P.; Bergmann, A.; Roldan, B.; Roth, C.; Dau, H.: Reactivity Determinants in Electrodeposited Cu Foams for Electrochemical CO2 Reduction. , ChemSusChem 11 (2018), p. 3449-3459
doi: 10.1002/cssc.201801582

Bergmann, A.; Jones, T.; Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; Reier, T.; Dau, H.; Strasser, P.: Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. , Nature Catalysis 1 (2018), p. 711-719
doi: 10.1038/s41929-018-0141-2

Mousazade, Y.; Mohammadi, R.M.; Chernev, P.; Bikas, R.; Bagheri, R.; Song, Z.; Lis, T.; Dau, H.; Najafpour, M.M.: Water oxidation by a manganese–potassium cluster: Mn oxide as a kinetically dominant “true” catalyst for water oxidation. , Catalysis Science & Technology 8 (2018), p. 4390-4398
doi: 10.1039/c8cy01151f

2017

Schuth, N.; Mebs, S.; Huwald, D.; Wrzolek, P.; Schwalbe, M.; Hemschemeier, A.; Haumann, M.: Effective intermediate-spin iron in O-2-transporting heme proteins. , Proceedings of the National Academy of Sciences of the United States of America : PNAS 114 (2017), p. 8556-8561
doi: 10.1073/pnas.1706527114

Gonzalez-Flores, Diego: Electrochemical water oxidation with transition-metal based catalysts : structure-function relations by electrochemistry combined with X-ray absorption spectroscopy and UV-visible spectroscopy. , Berlin, Freie Universität Berlin, Diss., 2017

Frey, C.E.; Kwok, F.; Gonzáles-Flores, D.; Ohms, J.; Cooley, K.; Dau, H.; Zaharieva, I.; Walter, T.W.; Simchi, H.; Mohney, S.E.; Kurz, P.: Evaporated manganese films as a starting point for the preparation of thin-layer MnOx water-oxidation anodes. , Sustainable Energy & Fuels 1 (2017), p. 1162-1170
doi: 10.1039/C7SE00172J

Natali, M.; Bazzan, I.; Goberna-Ferrón, S.; Al-Oweini, R.; Ibrahim, M.; Bassil, B.S.; Dau, H.; Scandola, F.; Galan-Mascaros, J.R.; Kortz, U.; Sartorel, A.; Zaharieva, I.; Bonchio, M.: Photo-assisted water oxidation by high-nuclearity cobalt-oxo cores: tracing the catalyst fate during oxygen evolution turnover. , Green Chemistry 19 (2017), p. 2416-2426
doi: 10.1039/c7gc00052a

Görlin, M.; Ferreira de Araújo, J.; Schmies, H.; Bernsmeier, D.; Dresp, S.; Gliech, M.; Jusys, Z.; Chernev, P.; Kraehnert, R.; Dau, H.; Strasser, P.: Tracking Catalyst Redox States and Reaction Dynamics in Ni–Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts : the Role of Catalyst Support and Electrolyte pH. , Journal of the American Chemical Society 139 (2017), p. 2070-2082
doi: 10.1021/jacs.6b12250

2016

Gonzalez-Flores, D.; Zaharieva, I.; Heidkamp, J.; Chernev, P.; Martinez-Moreno, E.; Pasquini, C.; Mohammadi, M.R.; Klingan, K.; Gernet, U.; Fischer, A.; Dau, H.: Electrosynthesis of Biomimetic Manganese-Calcium Oxides for Water Oxidation Catalysis - Atomic Structure and Functionality. , ChemSusChem 9 (2016), p. 379-387
doi: 10.1002/cssc.201501399

Görlin, M.; Chernev, P.; Ferreira de Araújo, J.; Reier, T.; Dresp, S.; Paul, B.; Krähnert, R.; Dau, H.; Strasser, P.: Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts. , Journal of the American Chemical Society 138 (2016), p. 5603-5614
doi: 10.1021/jacs.6b00332

Schrapers, P.; Mebs, S.; Ilina, Y.; Warner, D.; Wörmann, C.; Schuth, N.; Kositzki, R.; Dau, H.; Limberg, C.; Dobbek, H.; Haumann, M.: The binuclear nickel center in the A-cluster of acetyl-CoA synthase (ACS) and two biomimetic dinickel complexes studied by X-ray absorption and emission spectroscopy. , Journal of Physics: Conference Series 712 (2016), p. 012029/1-4
doi: 10.1088/1742-6596/712/1/012029

Najafpour, M.M.; Sedigh, D.J.; Hosseini, S.M.; Zaharieva, I.: Treated nanolayered Mn oxide by oxidizable compounds: A strategy to improve the catalytic activity toward water oxidation. , Inorganic Chemistry 55 (2016), p. 8827–8832
doi: 10.1021/acs.inorgchem.6b01334

Menezes, P.W.; Indra, A.; Bergmann, A.; Chernev, P.; Walter, C.; Dau, H.; Strasser, P.; Driess, M.: Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt-zinc oxide catalysts for efficient oxidation of water. , Journal of Materials Chemistry A 4 (2016), p. 10014-10022
doi: 10.1039/c6ta03644a

Zaharieva, I.; González-Flores, D.; Asfari, B.; Pasquini, C.; Mohammadi, M.R.; Klingan, K.; Zizak, I.; Loos, S.; Chernev, P.; Dau, H.: Water oxidation catalysis – role of redox and structural dynamics in biological photosynthesis and inorganic manganese oxides. , Energy & Environmental Science 9 (2016), p. 2433-2443
doi: 10.1039/C6EE01222A

2015

Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; de Araujo, J.F.; Reier, T.; Dau, H.; Strasser, P.: Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. , Nature Communications 6 (2015), p. 8625/1-9
doi: 10.1038/ncomms9625

 CryoEXAFS