Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

Perovskite-based tandem solar cells can achieve now efficiencies better than 25%.

Perovskite-based tandem solar cells can achieve now efficiencies better than 25%. © HZB

A 1 cm2 perovskite silicon tandem solar cell achieves an independently certified efficiency of 25.2 %. This was presented this week at an international conference in Hawaii, USA. The cell was developed jointly by HZB, Oxford University and Oxford PV - The Perovskite CompanyTM.

"Perovskite-based tandem solar cells can use light particularly efficiently and therefore offer the opportunity to achieve even higher efficiencies. That is why we have significantly expanded our expertise with the new Helmholtz innovation laboratory HySPRINT," says Prof. Dr. Rutger Schlatmann, Director of the Competence Center Thin Film and Nanotechnology for Photovoltaics Berlin (PVcomB) at HZB. "In our cooperation with Oxford PV, we aim to further optimize perovskite silicon tandem cells, demonstrate their scalability and facilitate their integration into large-area solar modules. For this new result we have optimized our high-efficiency silicon heterojunction bottom cell and developed an optical adaptation to the top cell using a very specific SiOx intermediate layer".

At the World Conference on Photovoltaic Energy Conversion, WCPEC-7 in Waikoloa, Hawaii, tandem solar cells involving perovskites were an important topic: two records have been presented with 25.2% certified efficiency: one from the group of Prof. Christophe Ballif at EPFL/CSEM and one from the consortium HZB/OxfordPV/Oxford University, presented by HZB scientist Dr. Bernd Stannowski. The third one, with 25.0% certified efficiency is a tandem cell developed by an HZB team headed by Dr. Steve Albrecht.

Oxford PV was established in 2010 and has had a close working relationship with Professor Snaith’s research group at the University of Oxford. In January 2018, Oxford PV announced its collaboration with HZB, the leading German research centre focused on energy materials research.

Press Release by Oxford PV

More Information on PVcomB at HZB

More Information on HySPRINT at HZB

More Information on the group Photovoltaics and Optoelectronics at University of Oxford

  • Copy link

You might also be interested in

  • HZB patent for semiconductor characterisation goes into serial production
    News
    10.10.2024
    HZB patent for semiconductor characterisation goes into serial production
    An HZB team has developed together with Freiberg Instruments an innovative monochromator that is now being produced and marketed. The device makes it possible to quickly and continuously measure the optoelectronic properties of semiconductor materials with high precision over a broad spectral range from the near infrared to the deep ultraviolet. Stray light is efficiently suppressed. This innovation is of interest for the development of new materials and can also be used to better control industrial processes.
  • Photovoltaic living lab reaches the 100 Megawatt-hour mark
    News
    27.09.2024
    Photovoltaic living lab reaches the 100 Megawatt-hour mark
    About three years ago, the living laboratory at HZB went into operation. Since then, the photovoltaic facade has been generating electricity from sunlight. On September 27, 2024, it reached the milestone of 100 megawatt-hours.

  • BESSY II: Heterostructures for Spintronics
    Science Highlight
    20.09.2024
    BESSY II: Heterostructures for Spintronics
    Spintronic devices work with spin textures caused by quantum-physical interactions. A Spanish-German collaboration has now studied graphene-cobalt-iridium heterostructures at BESSY II. The results show how two desired quantum-physical effects reinforce each other in these heterostructures. This could lead to new spintronic devices based on these materials.