Corona research at BESSY II: Two days of measuring operation to find the right key

Schematic representation of the coronavirus protease. The enzyme comes as a dimer consisting of two identical molecules. A part of the dimer is shown in colour (green and purple), the other in grey. The small molecule in yellow binds to the active centre of the protease and could be used as blueprint for an inhibitor.

Schematic representation of the coronavirus protease. The enzyme comes as a dimer consisting of two identical molecules. A part of the dimer is shown in colour (green and purple), the other in grey. The small molecule in yellow binds to the active centre of the protease and could be used as blueprint for an inhibitor. © Helena Tabermann/HZB

Filmclip: At BESSY II, the main protease of SARS-CoV2 has been decoded. This might help to develop drugs. © HGmedien/HZB

01:11

The Berlin Synchrotron Source BESSY II of the Helmholtz-Zentrum Berlin (HZB) will resume operation for two days. Scientists intend to use the intense X-ray radiation from BESSY II to search for active substances against the corona virus SARS-CoV2. Almost two hundred samples from an important protein of the virus will be examined in the coming hours. The samples are saturated with different molecules that could be used as components of active substances. The analyses will show whether certain molecules can dock particularly well to the protein molecule and thus hinder the reproduction of the virus. These molecules are best candidates as components of a future drug. 

In February, Prof. Dr. Rolf Hilgenfeld (University of Lübeck) and his team had already decoded the structure of a protein of the SARS-CoV-2 virus at the X-ray source BESSY II. It was the main protease, which is involved in the reproduction of the virus. The three-dimensional shape of this protease is crucial for its function, in particular the environment of so-called active centres in the molecule. 

Major Breakthrough: 3D-Structure of viral main protease decoded at BESSY II

Measurements at the MX stations at BESSY II have elucidated the protease's 3D structure in detail. "This was a major breakthrough," says Dr. Manfred Weiss, who heads the MX team at BESSY II. "As soon as the 3D structure is known, we can specifically look for active substances that block this protease and thus prevent the viruses from multiplying," explains Weiss.

Systematic search for fitting molecules

The MX team has developed a method that now enables the systematic search for active substances: fragment screening. A suitable drug must have components or fragments that are precisely tailored to the 3D structure of the protein. They must fit like a key in a lock in order to obstruct the function of the protein.

A fragment library consists of hundreds of molecule groups that could be used as components of active substances. And just as a burglar uses a lock pick to gradually find out what the perfect key for the safe looks like, research can use fragment screening.  Different molecules are gradually being tested until the best components for a suitable drug are identified.

Nearly 200 samples are being analysed

Dr. Linlin Zhang from the Lübeck team has now produced a large number of protein crystals and impregnated each sample with a different compound from the fragment library. These samples will now be investigated at BESSY II.

From the results, it can be determined which fragments dock at all in the active centre of the viral protease. These fragments can then be considered as components for a drug.  "Of course, further experiments and series of measurements will have to be carried out afterwards, both in animal models and in human cell cultures," said Weiss. But in view of the infinite number of chemical compounds, this systematic pre-selection of promising building blocks offers the chance of enormous acceleration.

"We initially started with the smaller library of 96 fragments," says Weiss. "But if there are not enough hits, we can also work with a much larger library".

arö

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.